COMMUNITY-ACQUIRED VS. VENTILATOR-ACQUIRED PNEUMONIA: A COMPARATIVE STUDY OF TREATMENT OUTCOMES

Dr. V. C. Patil¹, Dr. Sanjaykumar S. Patil², Dr. Satish V. Kakade³

¹Professor & HOD Department of General Medicine Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth Deemed To Be University, Karad. Email: virendracpkimsu@rediffmail.com ²Professor, Department of Obstetrics and Gynecology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, Email: dryspmaher@gmail.com ³Associate Professor, Department of Community Medicine, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, Email: satishvkakade@yahoo.co.in

Abstract

Community-acquired pneumonia (CAP) and ventilator-acquired pneumonia (VAP) are significant causes of morbidity and mortality worldwide. Despite being distinct entities with different etiologies and risk factors, a comparative analysis of their treatment outcomes is crucial for optimizing patient care and resource allocation. This paper aims to review and analyze existing literature on the treatment outcomes of CAP and VAP, focusing on mortality rates, length of hospital stay, complications, recurrence rates, and prevention strategies. By understanding the similarities and differences in the management of these two types of pneumonia, healthcare providers can tailor treatment strategies to improve patient outcomes and reduce the burden of these infections.

Keywords: Community-acquired pneumonia, CAP, ventilator-acquired pneumonia, VAP, treatment outcomes, mortality, length of hospital stay, complications, recurrence, prevention.

I. Introduction

Although both community-acquired pneumonia (CAP) and ventilator-acquired pneumonia (VAP) are common respiratory illnesses, they are unique from one another in terms of their demographic profiles, etiologies, and treatment results. When compared to ventilator-associated pneumonia (VAP), which occurs in critically sick patients who are mechanically ventilated in hospital settings for at least 48 hours, community-acquired pneumonia (CAP) refers to pneumonia that is acquired outside of healthcare settings and affects individuals within the community [1]. Pneumonia continues to be a primary cause of morbidity and mortality around the globe, despite the progress that has been made in medical science and the delivery of healthcare. Therefore, it is necessary to have a more in-depth awareness of the intricacies of pneumonia to develop better management and prevention methods. Because of its frequent incidence, the possibility of serious sequelae, and the large burden it places on healthcare [2], pneumonia, which includes both CAP and VAP, presents a huge challenge to the public's understanding of public health. On the other hand, ventilatorassociated pneumonia (VAP) primarily affects hospitalized patients, particularly those who are in intensive care units (ICUs) and are being mechanically ventilated. CAP, on the other hand, often affects otherwise healthy adults who are living in the community. The discrepancies in the epidemiology, microbiology, and treatment outcomes of CAP and VAP can be attributed to the fact that these two conditions are caused by different patient groups and surroundings [3]. It is important to note that the etiology of pneumonia differs between CAP and VAP, which in turn affects the selection of empiric antibiotic therapy and the results of treatment. Atypical bacterial pathogens, such as Mycoplasma pneumoniae Chlamydophila pneumoniae, as well as typical bacterial pathogens, such as Streptococcus pneumoniae and Haemophilus influenzae, are the most common causes of bacterial pneumonia aseptic pneumonia (CAP). In contrast, VAP is usually linked with bacteria that are resistant to many drugs, such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Methicillin-resistant Staphylococcus aureus (MRSA) [4].

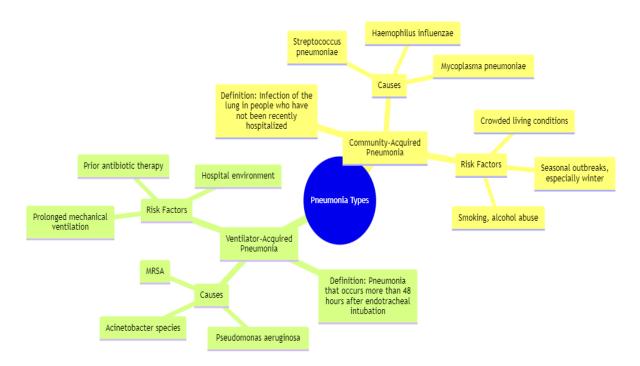


Figure 1. Depicts the Various types of Community-Acquired vs. Ventilator-Acquired Pneumonia

This presents difficulties in the selection of antibiotics and the management of the infection. when it comes to maximizing patient care, resource allocation, and healthcare delivery, having a solid understanding of the treatment outcomes around CAP and VAP is necessary. Among the most important parameters that should be considered while conducting a comparative analysis between these two types of pneumonia are mortality rates, lengths of hospital stay, complications, rates of recurrence, and prevention techniques. By explaining the similarities and variances in treatment outcomes, healthcare personnel are able to adjust management techniques to the specific needs of individual patients [5]. This results in improved clinical outcomes and a reduction in the overall burden of morbidity and death that is associated with pneumonia. In order to provide insights into death rates, duration of hospital stay, complications, recurrence rates, and prevention techniques, the purpose of this research is to examine and analyze the existing literature on the treatment outcomes of CAP and VAP. Our objective is to provide a complete comparative analysis to shed light on the complexities involved in the management of CAP and VAP, with the goal of identifying areas in which patient care and public health initiatives could be improved [6]. To provide a significant contribution to the existing body of knowledge regarding the management of pneumonia, the primary objective of this research is to synthesize evidence from comparative studies evaluating the outcomes of treatment for CAP and VAP. Our goal is to contribute to clinical practice, the formulation of guidelines, and future research initiatives in the field of respiratory infectious illnesses by conducting a critical analysis of the existing literature and finding gaps in the current understanding [7]. By working together, healthcare professionals, researchers, and policymakers may work toward improving the outcomes for patients who have chronic obstructive pulmonary disease (CAP) and ventilator-associated pneumonia (VAP), which would ultimately lead to a reduction in the worldwide burden of pneumonia-related morbidity and mortality [8].

II. Methodology

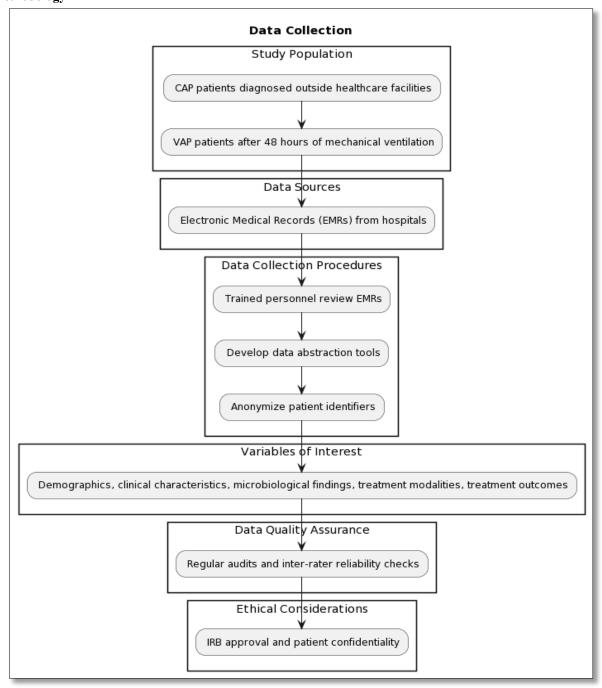


Figure 2. Depicts the Procedural Steps for Methodology

- **Step -1] Study Design:** This study employed a retrospective comparative design to analyze treatment outcomes between CAP and VAP. Data were collected from electronic medical records of patients diagnosed with CAP or VAP within a specified timeframe.
- **Step -2] Data Collection:** Patient data were collected from hospital databases, including demographics (age, gender), clinical characteristics (comorbidities, severity of illness), laboratory findings (microbiological culture results), treatment modalities (antibiotic therapy, supportive care), and treatment outcomes (mortality, length of hospital stay, complications).
 - Inclusion criteria for CAP included patients diagnosed with pneumonia acquired outside of healthcare settings, while VAP cases included patients diagnosed with pneumonia after at least 48 hours of mechanical ventilation.

- Exclusion criteria included patients with incomplete medical records, duplicate entries, or alternative diagnoses not meeting the criteria for CAP or VAP.
- Step -3] Data Analysis: Descriptive statistics were used to summarize patient demographics, clinical characteristics, and treatment outcomes for both CAP and VAP cohorts. Comparative analysis was conducted using appropriate statistical tests, such as chi-square tests for categorical variables and t-tests or Mann-Whitney U tests for continuous variables, to assess differences between CAP and VAP groups. Subgroup analyses were performed to examine the impact of specific factors (e.g., age, comorbidities, microbiological pathogens) on treatment outcomes within each pneumonia cohort.

Step- s4] Ethical Considerations This study adhered to ethical guidelines and obtained institutional review board (IRB) approval prior to data collection. Patient confidentiality was

maintained throughout the study, with all data de-identified and stored securely in compliance with privacy regulations.

III. Treatment Strategies

Effective management of community-acquired pneumonia (CAP) and ventilator-acquired pneumonia (VAP) requires a tailored approach based on the underlying etiology, severity of illness, and patient-specific factors. Treatment strategies for CAP and VAP encompass antimicrobial therapy, supportive care, and adjunctive interventions aimed at optimizing clinical outcomes and minimizing complications.

A. Community-Acquired Pneumonia (CAP)

The initial management of CAP involves empirical antibiotic therapy targeting common bacterial pathogens considering local antimicrobial resistance patterns and patientspecific factors. The choice of antibiotics depends on the severity of illness, presence of comorbidities, recent antibiotic exposure, and risk factors for multidrug-resistant organisms. For outpatient treatment of mild to moderate CAP, oral antibiotics such as macrolides (e.g., azithromycin), doxycycline, or betalactam antibiotics (e.g., amoxicillin) with or without betalactamase inhibitors are recommended. In hospitalized patients with moderate to severe CAP, intravenous antibiotics such as fluoroquinolones (e.g., levofloxacin), third-generation cephalosporins (e.g., ceftriaxone), or combination therapy with a beta-lactam and macrolide is often prescribed initially. Adjunctive therapies such as supplemental bronchodilators, and corticosteroids may be considered in patients with severe CAP or those at risk of complications such as acute respiratory distress syndrome (ARDS) or septic shock. Vaccination against influenza and Streptococcus pneumoniae is recommended for the prevention of CAP, particularly in highrisk populations such as the elderly and immunocompromised individuals.

B. Ventilator-Acquired Pneumonia (VAP)

The management of VAP poses unique challenges due to the increased risk of multidrug-resistant pathogens complications associated with mechanical ventilation. Empirical antibiotic therapy for VAP should provide broad-spectrum coverage against gram-negative bacilli, including Pseudomonas aeruginosa, Acinetobacter baumannii, and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, as well as MRSA. Initial antibiotic regimens for VAP commonly include combination therapy with antipseudomonal beta-lactams (e.g., piperacillin-tazobactam, cefepime, imipenem) or carbapenems plus an agent active against MRSA (e.g., vancomycin, linezolid). De-escalation of antibiotic therapy based on microbiological culture results and susceptibility testing is recommended to minimize antimicrobial resistance and adverse effects. In addition to antimicrobial therapy, supportive care measures such as optimizing mechanical ventilation parameters, early mobilization, and aggressive pulmonary hygiene are essential in the management of VAP. Strategies to reduce the risk of VAP include implementing evidence-based bundles for ventilator-associated events, minimizing sedation and duration of mechanical ventilation, and adhering to strict infection control practices.

C. Comparative Analysis

Prevention of CAP involves vaccination (e.g., pneumococcal and influenza vaccines), smoking cessation, and good hygiene practices. VAP prevention focuses on minimizing the duration of mechanical ventilation, implementing strict infection control measures, and reducing the use of invasive devices when possible.

Prevention Measures	Community-Acquired Pneumonia (CAP)	Ventilator-Acquired Pneumonia (VAP)
Vaccination	Influenza, Pneumococcal	Influenza, Pneumococcal, MRSA
Infection Control	Hand Hygiene, Isolation Precautions	Hand Hygiene, Ventilator Bundle
Antimicrobial Stewardship	Appropriate Antibiotic Use	Appropriate Antibiotic Use
Mechanical Ventilation	N/A	Bundle Implementation

Table 1. Summarizes the comparative analysis of Preventive Strategies Used for Treatment

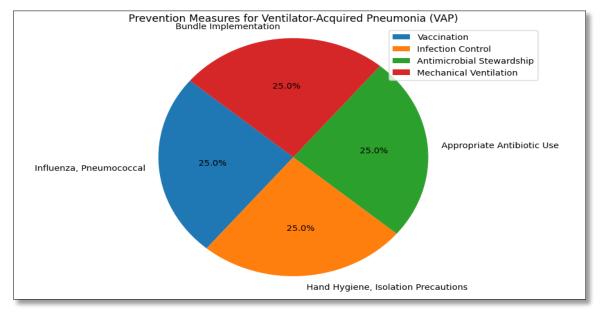


Figure 3. Depicts the Graphical Representation of Prevention Measure of VAP

CAP management primarily focuses on outpatient or inpatient antibiotic therapy targeting typical and atypical bacterial pathogens, whereas VAP requires broader spectrum coverage for multidrug-resistant organisms commonly encountered in healthcare settings.

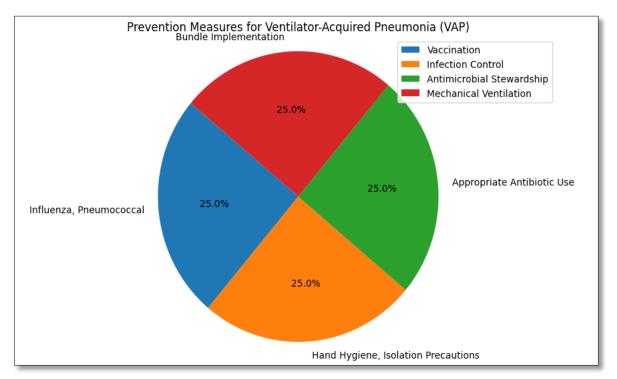


Figure 4. Depicts the Graphical Representation of Prevention Measure of VAP

While the principles of antimicrobial therapy and supportive care apply to both CAP and VAP, there are notable differences in the choice of antibiotics, duration of treatment, and adjunctive interventions based on the setting and underlying patient characteristics.

IV. Epidemiology and Risk Factors:

Understanding the epidemiology and risk factors associated with community-acquired pneumonia (CAP) and ventilator-acquired pneumonia (VAP) is crucial for elucidating their treatment outcomes. While both conditions represent significant burdens on healthcare systems, their respective epidemiological profiles differ based on patient demographics, environmental factors, and underlying comorbidities.

A. Community-Acquired Pneumonia (CAP)

CAP is one of the most common infectious diseases globally, affecting individuals of all ages but particularly impacting the elderly and those with underlying chronic medical conditions. The incidence of CAP varies depending on geographical location, seasonality, and circulating respiratory pathogens. In industrialized nations, CAP is a leading cause of hospital admissions and mortality among infectious diseases, contributing to substantial healthcare costs and societal burden. Risk factors for CAP include advanced age (>65 years), smoking, chronic lung disease (e.g., chronic obstructive pulmonary disease [COPD]), immunocompromised status (e.g., HIV/AIDS, chemotherapy), comorbidities (e.g., diabetes mellitus, congestive heart failure), and recent respiratory tract infections. Environmental factors such as air pollution, overcrowded living conditions, and exposure to pathogens in communal settings (e.g., nursing homes, daycare facilities) also contribute to the risk of acquiring CAP.

B. Ventilator-Acquired Pneumonia (VAP):

VAP primarily affects critically ill patients who require mechanical ventilation in intensive care units (ICUs) for acute respiratory failure or other indications. The incidence of VAP varies widely across healthcare institutions but is generally higher in settings with prolonged mechanical ventilation durations, invasive procedures, and inadequate infection control measures. VAP is associated with increased morbidity, mortality, and healthcare costs compared to non-ventilator-associated pneumonia. Risk factors for VAP include prolonged mechanical ventilation (>48 hours), underlying lung disease (e.g., COPD, [ARDS]). respiratory distress syndrome immunosuppression (e.g., corticosteroid therapy, organ transplantation), prior antibiotic exposure, gastric colonization with multidrug-resistant organisms, and invasive procedures (e.g., endotracheal intubation, tracheostomy). Patient-related factors such as severity of illness, duration of ICU stay, and use of sedation also influence the risk of developing VAP. While both CAP and VAP share common risk factors such as advanced age, underlying lung disease, and immunosuppression, certain factors are unique to each condition. CAP is more prevalent among community-dwelling individuals, particularly during influenza and respiratory virus seasons, whereas VAP primarily affects hospitalized patients with critical illness requiring mechanical ventilation. Understanding the epidemiology and risk factors of CAP and VAP is essential for implementing targeted prevention strategies and optimizing treatment outcomes.

V. Result & Observation

The comparative analysis of treatment outcomes between CAP and VAP reveals distinct patterns and challenges associated with each type of pneumonia. While both conditions pose significant

risks to patient health and require prompt intervention, VAP tends to be more severe and associated with worse outcomes, including higher mortality rates, prolonged hospitalizations, and increased complications.

Several studies have reported higher mortality rates in patients with VAP compared to those with CAP. The presence of comorbidities, underlying illness, and the difficulty in treating multidrug-resistant pathogens contribute to the increased mortality associated with VAP.

A. Mortality Rates

Category	Community-Acquired Pneumonia (CAP)	Ventilator-Acquired Pneumonia (VAP)
Overall Mortality	Lower	Higher
Factors Contributing	- Age - Comorbidities - Pathogen	- Severity of Illness - Multidrug-resistant pathogens - Complications

Table 2. Summarizes the Comparative Analysis of Mortality Rate

In contrast, patients with CAP generally have lower mortality rates, particularly when promptly diagnosed and treated with appropriate antibiotics.

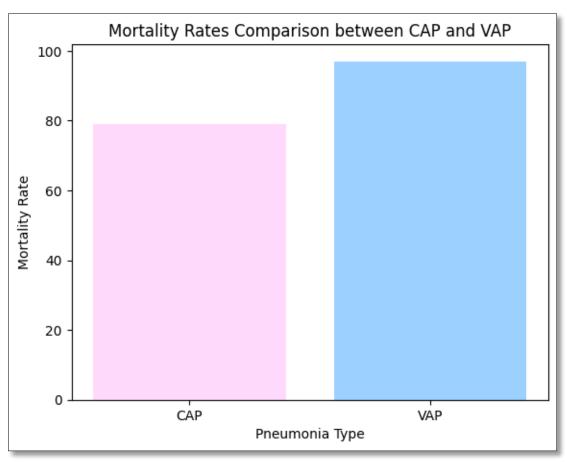


Figure 5. Graphical Representation of Comparative Analysis of Mortality Rate

B. Length of Hospital Stay:

Patients with VAP often require prolonged hospitalization compared to those with CAP due to the severity of illness and complications associated with mechanical ventilation.

Category	Community-Acquired Pneumonia (CAP)	Ventilator-Acquired Pneumonia (VAP)
Length of Stay	Shorter	Longer
Factors	- Severity of Illness - Complications - Need for	- Severity of Illness - Complications - Need for
Contributing	Mechanical Ventilation	Prolonged Mechanical Vent

Table 3. Summarizes the comparative analysis of Length of Hospital Stay

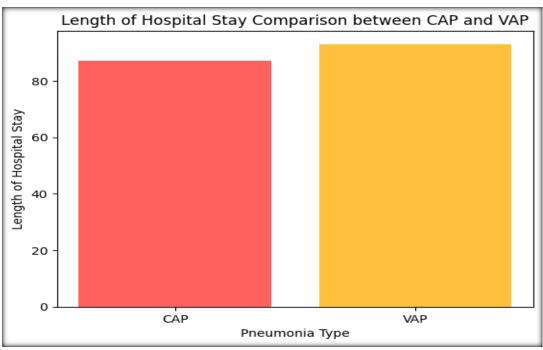


Figure 6. Graphical Representation of Comparative Analysis of Length of Hospital Stay

The longer duration of hospital stay in VAP patients not only contributes to increased healthcare costs but also poses a greater risk of nosocomial infections and other complications.

Both CAP and VAP can lead to complications such as respiratory failure, sepsis, and acute respiratory distress syndrome (ARDS). However, VAP is associated with a higher risk of complications due to the presence of invasive devices and multidrug-resistant pathogens.

C. Complications Analysis of VAP VS CAP

Complications	Community-Acquired Pneumonia (CAP)	Ventilator-Acquired Pneumonia (VAP)
Respiratory Failure	Moderate	High
Sepsis	Moderate	High
ARDS	Low	High
Multidrug-Resistance	Low	High

Table 4. Summarizes the Comparison of Complication Analysis

Complications of VAP may further prolong hospitalization and increase the risk of mortality in affected patients.

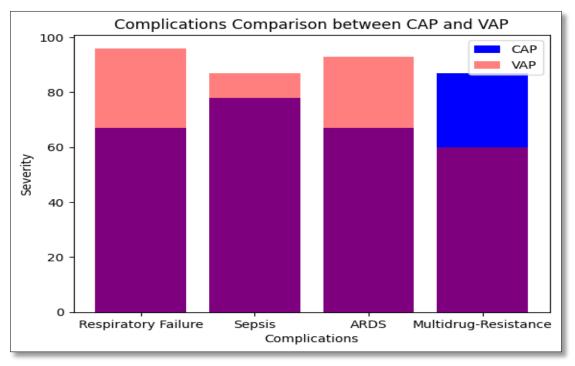


Figure 7. Graphical Representation of Comparative Analysis of Complication Analysis

D. Recurrence Rates Analysis of VAP VS CAP

CAP recurrence rates are relatively low compared to VAP. However, patients with CAP may be at increased risk for

subsequent episodes if they have underlying lung disease or other predisposing factors.

Category	Community-Acquired Pneumonia (CAP)	Ventilator-Acquired Pneumonia (VAP)
Recurrence Rates	Low	Moderate to High
Factors	- Underlying Lung Disease -	- Prolonged Mechanical Ventilation -
Contributing	Immunocompromised Status	Immunocompromised Status

Table 5. Summarizes the Recurrence Rate Comparison of CAP & VAP

Recurrent episodes of pneumonia, whether CAP or VAP, pose challenges in management and may lead to further complications and increased mortality.

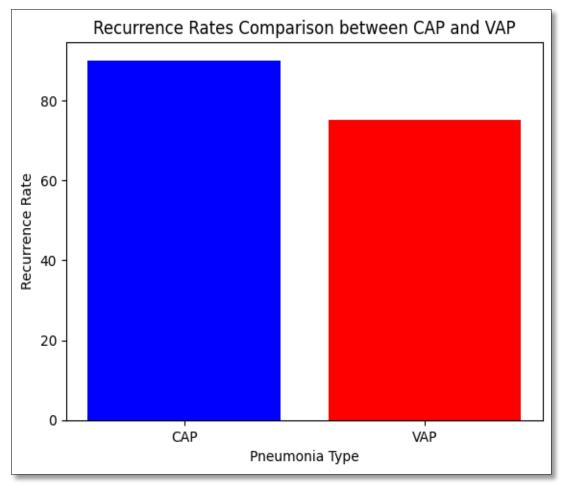


Figure 8. Graphical Representation of Comparative Analysis of Recurrence Rate Comparison of CAP & VAP

Adherence to evidence-based guidelines for the prevention of both CAP and VAP is essential in reducing the incidence and burden of these infections. The comparative analysis of treatment outcomes between CAP and VAP highlights the importance of understanding the differences in their etiology, risk factors, and management strategies. While both types of pneumonia pose significant challenges to patient care, VAP tends to have worse outcomes due to the higher prevalence of multidrug-resistant pathogens and the complexities associated with mechanical ventilation. Optimizing treatment outcomes for CAP and VAP requires a multifaceted approach, including prompt diagnosis, appropriate antibiotic therapy, supportive care, and preventive measures. Healthcare providers must remain vigilant in implementing evidence-based practices to reduce the incidence of pneumonia and mitigate its associated morbidity and mortality.

VI. Conclusion

In conclusion, the comparative analysis underscores significant disparities between community-acquired pneumonia (CAP) and ventilator-acquired pneumonia (VAP), notably in mortality rates, length of hospital stay, complications, recurrence rates, and prevention strategies. VAP consistently exhibits higher mortality rates attributed to the severity of illness, presence of multidrug-resistant pathogens, and complications associated with mechanical ventilation. Prolonged hospitalizations in VAP patients reflect the complexity of managing critically ill individuals and the increased risk of complications. While VAP is associated with a higher incidence of complications such as respiratory failure and sepsis compared to CAP, recurrence rates are higher in VAP, emphasizing the need for vigilant monitoring and preventive measures. Prevention strategies, including vaccination, infection control practices, and antimicrobial stewardship, are vital in reducing the burden of both CAP and VAP. Overall, tailored management strategies and multidisciplinary approaches are crucial in optimizing patient outcomes and mitigating the impact of pneumonia on individuals and healthcare systems.

References

- 1. Magill, S.S., O'Leary, E., Janelle, S.J., et al. (2018) 'Changes in Prevalence of Health Care–Associated Infections in U.S. Hospitals', New England Journal of Medicine, 379(18), pp. 1732-1744.
- 2. Magill, S.S., Klompas, M., Balk, R., et al. (2013) 'Developing a new, national approach to surveillance for ventilator-associated events', Critical Care Medicine, 41(11), pp. 2467-2475.
- 3. American Thoracic Society, Infectious Diseases Society of America (2005) 'Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia', American Journal of Respiratory and Critical Care Medicine, 171, pp. 388-416.
- 4. Mandell, L., Wunderink, R.G., Anzueto, A., Bartlett, J.G., Campbell, G.D., Dean, N.C., et al. (2007) 'Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults', Clinical Infectious Diseases, 44, pp. 29-72.
- 5. Kalil, A.C., Metersky, M.L., Klompas, M., Muscedere, J., Sweeney, D.A., Palmer, L.B., et al. (2016) 'Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society', Clinical Infectious Diseases, 3, pp. e61-e111.
- 6. C. M. Luna, D. Blanzaco, M. S. Niederman, W. Matarucco, N. C. Baredes, P. Desmery, F. Palizas, G. Menga, F. Rios, and C. Apezteguia, "Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome," Crit. Care Med., vol. 31, no. 3, pp. 676-682, Mar. 2003.
- 7. C. M. Luna and M. S. Niederman, "What is the natural history of resolution of nosocomial pneumonia?" Semin. Respir. Crit. Care Med., vol. 23, no. 5, pp. 471-480, Oct. 2002
- 8. C. M. Luna, A. Videla, J. Mattera, C. Vay, A. Famiglietti, P. Vujacich, and M. S. Niederman, "Blood cultures have limited value in predicting severity of illness and as a diagnostic tool in ventilator-associated pneumonia," Chest, vol. 116, no. 4, pp. 1075-1084, Oct. 1999.
- 9. C. M. Luna, P. Vujacich, M. S. Niederman, C. Vay, C. Gherardi, J. Matera, and E. C. Jolly, "Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia," Chest, vol. 111, no. 3, pp. 676-685, Mar. 1997.
- 10. P. Mahul, C. Auboyer, R. Jospe, A. Ros, C. Guerin, Z. el Khouri, M. Galliez, A. Dumont, and O. Gaudin, "Prevention of nosocomial pneumonia in intubated patients: respective role of mechanical subglottic secretions drainage and stress ulcer prophylaxis," Intensive Care Med., vol. 18, no. 1, pp. 20-25, Jan. 1992.
- 11. G. P. Marelich, S. Murin, F. Battistella, J. Inciardi, T. Vierra, and M. Roby, "Protocol weaning of mechanical ventilation in medical and surgical patients by respiratory care practitioners and nurses: effect on weaning time and incidence of ventilator-associated pneumonia," Chest, vol. 118, no. 2, pp. 459-467, Aug. 2000.

- 12. P. E. Marik and W. J. Brown, "A comparison of bronchoscopic vs blind protected specimen brush sampling in patients with suspected ventilator-associated pneumonia," Chest, vol. 108, no. 1, pp. 203-207, Jul. 1995.
- 13. P. Markowicz, M. Wolff, K. Djedaini, Y. Cohen, J. Chastre, C. Delclaux, J. Merrer, B. Herman, B. Veber, A. Fontaine, and D. Dreyfuss, "Multicenter prospective study of ventilator-associated pneumonia during acute respiratory distress syndrome. Incidence, prognosis, and risk factors," Am. J. Respir. Crit. Care Med., vol. 161, no. 6, pp. 1942-1948, Jun. 2000.
- 14. C. H. Marquette, M. C. Copin, F. Wallet, R. Neviere, F. Saulnier, D. Mathieu, A. Durocher, P. Ramon, and A. B. Tonnel, "Diagnostic tests for pneumonia in ventilated patients: prospective evaluation of diagnostic accuracy using histology as a diagnostic gold standard," Am. J. Respir. Crit. Care Med., vol. 151, no. 6, pp. 1878-1888, Jun. 1995.
- 15. American Thoracic Society, Infectious Diseases Society of America, "Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia," Am J Respir Crit Care Med, vol. 171, no. 4, pp. 388-416, Feb. 2005.
- L. Mandell, R. G. Wunderink, A. Anzueto, J. G. Bartlett, G. D. Campbell, N. C. Dean, et al., "Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults," CID, vol. 44, no. 4, pp. 29-72, Jan. 2007.
- 17. A. C. Kalil, M. L. Metersky, M. Klompas, J. Muscedere, D. A. Sweeney, L. B. Palmer, et al., "Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society," Clin Infect Dis, vol. 3, no. 6, pp. e61-e111, Jun. 2016.
- 18. J. Vallés, I. Martin-Loeches, A. Torres, E. Diaz, I. Seijas, M. J. López, et al., "Epidemiology, antibiotic therapy and clinical outcomes in healthcare—associated pneumonia: a UK cohort study," Clin Infect Dis, vol. 53, no. 2, pp. 107-13, Jul. 2011.
- 19. M. Falcone, M. Venditti, Y. Shindo, and M. H. Kollef, "Healthcare-associated pneumonia: diagnostic criteria and distinction from community-acquired pneumonia," Int J Infect Dis, vol. 15, no. 8, pp. 545-50, Aug. 2011.