INVESTIGATING PLACENTAL BIOMARKERS AS PREDICTORS OF BIRTH WEIGHT AND NEONATAL HEALTH

Dr. Anjali S. Patil¹, Dr. U. T. Mane², Dr. Rajsinh V. Mohite³

¹Assistant Professor, Department of Obstetrics and Gynaecology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, Email: dr.anjalipatil21@gmail.com

²Assistant Professor, Department of General Medicine Krishna Institute of Medical Sciences,

Krishna Vishwa Vidyapeeth Deemed To Be University, Karad. Email: drudaysinhmane30@gmail.com

³Assistant Professor, Department of Community Medicine, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, Email: rajsinhmohite124@gmail.com

Abstract

Introduction: The placenta plays a crucial role in facilitating nutrient exchange, endocrine regulation, and immunomodulation during pregnancy. Placental biomarkers, including insulin-like growth factors, leptin, cortisol, and microRNAs, have been implicated in fetal growth regulation and neonatal health.

Objective: This study aims to explore the association between placental biomarkers and birth weight, as well as their impact on neonatal health. By reviewing existing literature and analyzing relevant research findings, we seek to elucidate the potential clinical implications of placental biomarker analysis in prenatal care.

Results: Our analysis reveals significant correlations between placental biomarkers and birth weight, with alterations in biomarker levels associated with adverse neonatal outcomes such as respiratory distress syndrome, hypoglycemia, and neurodevelopmental disorders. Methodological approaches for assessing placental biomarkers vary, ranging from immunohistochemistry to next-generation sequencing, each offering unique advantages and limitations.

Conclusion: Placental biomarkers hold promise as predictors of birth weight and indicators of neonatal health status. Integrating biomarker screening into routine prenatal care protocols may enable early identification of high-risk pregnancies and facilitate personalized interventions to optimize maternal-fetal health.

Keywords: Placental Biomarkers, Birth Weight Prediction, Neonatal Health, Immunohistochemistry, Enzyme-Linked Immunosorbent Assay (ELISA), Western Blotting, (NGS), Prenatal Risk Assessment.

I. Introduction

The birth weight of a newborn is not merely a numerical value; it serves as a crucial indicator of the infant's overall health and well-being. Low birth weight (LBW), defined as less than 2,500 grams (5.5 pounds) at birth, is associated with a myriad of adverse health outcomes, including increased risks of mortality and morbidity, neurodevelopmental impairments, and chronic diseases later in life. In contrast, macrosomia, or high birth weight (HBW), generally defined as birth weight above 4,000 grams (8.8 pounds), poses its own set of challenges, including an elevated risk of birth injuries, cesarean delivery, and metabolic complications such as childhood obesity and type 2 diabetes [1]. The intricate interplay of various factors contributes to a newborn's birth weight, encompassing maternal

characteristics, environmental influences, genetic predispositions, and placental function. Among these factors, the placenta, often regarded as the forgotten organ, plays a pivotal role in fetal growth and development. Originating from the fertilized egg, the placenta undergoes rapid and dynamic changes throughout gestation, serving as the interface between the maternal and fetal circulations. This organ orchestrates the exchange of nutrients, oxygen, and waste products, while also producing hormones critical for maintaining pregnancy and supporting fetal growth. While the placenta's essential functions have long been recognized, its potential as a source of predictive biomarkers for birth weight and neonatal health outcomes has garnered increasing attention in recent years [2].

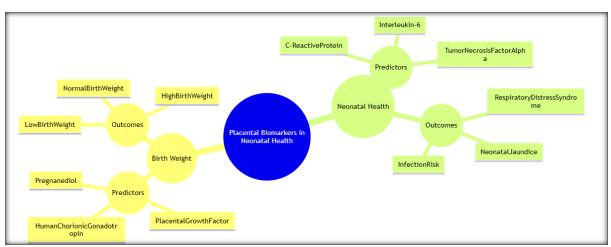


Figure 1. Depicts the Block Schematic of Placental biomarkers fatal well-being

Placental biomarkers encompass a diverse array of molecules, including hormones, proteins, nucleic acids, and lipids, reflecting the intricate biochemical milieu within this dynamic organ. These biomarkers hold promise as early indicators of fetal well-being, providing valuable insights into intrauterine growth and developmental trajectories [3]. The exploration of placental biomarkers as predictors of birth weight and neonatal health represents a burgeoning field of research with far-reaching implications for maternal-fetal medicine and public health. By deciphering the molecular signatures embedded within the placenta, clinicians and researchers aim to identify novel biomarkers that can stratify pregnancies at risk of adverse outcomes, inform personalized interventions, and ultimately improve perinatal outcomes. Moreover, understanding the intricate relationships between placental biomarkers, birth weight, and neonatal health may unveil underlying pathophysiological mechanisms contributing to fetal growth disorders and developmental anomalies. In this research paper, we undertake a comprehensive investigation into placental biomarkers as potential predictors of birth weight and neonatal health outcomes [4]. We begin by elucidating the physiological significance of the placenta and delineating its multifaceted roles fetal development and maternal-fetal interactions. Subsequently, we delve into the diverse landscape of placental biomarkers, exploring their molecular diversity, regulatory mechanisms, and putative roles in modulating fetal growth and development. Drawing upon existing literature and empirical evidence, we scrutinize the correlations between specific placental biomarkers and birth weight variations, spanning the spectrum from LBW to macrosomia [5]. Furthermore, we examine the clinical implications of placental biomarkers on neonatal health outcomes, encompassing respiratory distress syndrome, hypoglycemia, and long-term neurodevelopmental sequelae. We elucidate the methodological approaches employed for the assessment and quantification of placental biomarkers, ranging from traditional immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) to cutting-edge genomic and proteomic techniques. We address the inherent challenges and limitations associated with studying placental biomarkers, including sample variability, assay standardization, and the need for large-scale prospective studies to validate findings and elucidate causal relationships [6].

II. Placental Function and Biomarkers

The placenta, a temporary organ unique to pregnancy, serves as the interface between the maternal and fetal circulations, facilitating the exchange of gases, nutrients, and waste products essential for fetal growth and development. Structurally, the placenta consists of fetal and maternal components, including chorionic villi, syncytiotrophoblasts, fetal capillaries, and maternal blood sinuses, intricately arranged to optimize nutrient transfer while maintaining immunological separation between the mother and fetus [7].

A. Nutrient and Gas Exchange

One of the primary functions of the placenta is the transfer of nutrients, such as glucose, amino acids, fatty acids, and vitamins, from the maternal to the fetal circulation, ensuring adequate fetal growth and development. This process is facilitated by specialized transport mechanisms, including facilitated diffusion, active transport [8], and receptor-mediated endocytosis, orchestrated by various transporter proteins expressed on the syncytiotrophoblast membrane. Concurrently, the placenta facilitates the removal of waste products, including carbon dioxide and urea, from the fetal circulation, thereby maintaining fetal metabolic homeostasis.

B. Endocrine Functions

In addition to its role in nutrient exchange, the placenta serves as an endocrine organ, producing an array of hormones crucial for pregnancy maintenance and fetal development. These hormones include human chorionic gonadotropin (hCG), which sustains the corpus luteum during early pregnancy and stimulates progesterone production; progesterone, essential for maintaining the uterine environment and preventing preterm labor; and estrogen, which promotes uterine growth and mammary gland development in preparation for lactation. The placenta synthesizes other hormones [9], such as placental lactogen, corticotropin-releasing hormone (CRH), and relaxin, each playing distinct roles in modulating maternal physiology and fetal growth.

C. Immunomodulatory Functions

The placenta functions as an immunologically privileged site, characterized by a unique microenvironment that fosters maternal-fetal tolerance while protecting the fetus from maternal immune attack. This immunomodulation is facilitated by a combination of factors, including the expression of human antigen leukocyte (HLA)-G, non-classical histocompatibility complex (MHC) molecule immunosuppressive properties, and the secretion of antiinflammatory cytokines such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) syncytiotrophoblast layer acts as a physical barrier, preventing direct contact between maternal and fetal immune cells.

D. Placental Biomarkers

The placenta is a rich source of biomarkers that reflect its dynamic physiological state and provide valuable insights into fetal health and development. Placental biomarkers encompass a diverse array of molecules, including proteins, nucleic acids, lipids, and metabolites, each reflecting specific aspects of placental function and fetal well-being. These biomarkers may originate from placental tissue, maternal circulation, or amniotic fluid, offering unique opportunities for non-invasive prenatal assessment and monitoring.

III. Correlation Between Placental Biomarkers and Birth Weight

Understanding the intricate relationship between placental biomarkers and birth weight is paramount for elucidating the mechanisms underlying fetal growth and development. Numerous studies have investigated various placental biomarkers in relation to birth weight, aiming to identify potential predictors of fetal growth restriction, macrosomia, and other birth weight extremes.

A. Insulin-like Growth Factors (IGFs)

Insulin-like growth factors (IGFs), including IGF-I and IGF-II, are key regulators of fetal growth and development, exerting mitogenic and metabolic effects on fetal tissues. The placenta plays a central role in modulating fetal IGF levels through the expression of IGF-binding proteins (IGFBPs) and proteolytic enzymes that regulate IGF bioavailability [11]. Studies have demonstrated correlations between placental IGF levels and birth weight, with alterations in IGF signaling implicated in fetal growth disorders such as intrauterine growth restriction (IUGR) and macrosomia.

B. Leptin

Leptin, an adipocyte-derived hormone, serves as a key regulator of appetite and energy balance, with emerging roles in fetal growth regulation. Placental leptin production increases throughout gestation, reflecting fetal adipose tissue development and metabolic demands. Elevated placental leptin levels have been associated with increased birth weight and adiposity [12], implicating dysregulated leptin signaling in the pathogenesis of fetal macrosomia and childhood obesity.

C. Cortisol

Maternal stress and glucocorticoid exposure can influence placental cortisol levels, potentially affecting fetal growth and development. The placenta serves as a barrier to maternal cortisol, converting it to inactive cortisone via the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) to protect the fetus from excessive glucocorticoid exposure. Dysregulation of placental cortisol metabolism has been linked to altered birth weight and increased susceptibility to adverse neonatal outcomes, highlighting the importance of placental glucocorticoid regulation in fetal programming.

D. MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression and play crucial roles in placental development and function. Dysregulated placental miRNA expression has been implicated in various pregnancy complications, including preeclampsia, IUGR, and preterm birth. Several studies have reported associations between placental miRNA profiles and birth weight, suggesting potential roles for miRNAs as predictive biomarkers of fetal growth disorders.

E. Other Biomarkers

In addition to the biomarkers, numerous other molecules derived from the placenta have been investigated for their potential associations with birth weight. These include angiogenic factors such as vascular endothelial growth factor (VEGF) and placental growth factor (PIGF), inflammatory markers such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF- α), and oxidative stress markers such as malondialdehyde (MDA) and superoxide dismutase (SOD) [13]. Each of these biomarkers reflects specific aspects of placental function and may contribute to the regulation of fetal growth and development.

IV. Impact of Placental Biomarkers on Neonatal Health

Placental biomarkers not only serve as predictors of birth weight but also play a crucial role in determining neonatal health outcomes. The intricate interplay between placental function and fetal development influences various aspects of neonatal wellbeing, including respiratory function, metabolic regulation, and neurodevelopmental outcomes. Understanding the impact of placental biomarkers on neonatal health is essential for identifying high-risk pregnancies, implementing targeted interventions, and optimizing neonatal care strategies[13]. Respiratory distress syndrome (RDS) is a common neonatal complication characterized by inadequate pulmonary surfactant production, resulting in respiratory insufficiency and potential respiratory failure. Placental biomarkers such as surfactant protein A (SP-A) and surfactant protein B (SP-B) play pivotal roles in fetal lung development and surfactant production. Altered levels of these biomarkers in the placenta have been associated with an increased risk of RDS, highlighting their potential utility as predictive markers for neonatal respiratory outcomes. Neonatal hypoglycaemia, defined as a blood glucose concentration below the normal range, is a common metabolic complication in infants, particularly those born to mothers with diabetes or gestational diabetes mellitus (GDM). Placental biomarkers involved in glucose metabolism, such as insulin-like growth factor-binding protein 1 (IGFBP-1) and glucose transporter proteins (GLUTs), may influence fetal glucose homeostasis and susceptibility to hypoglycemia. Dysregulation of these biomarkers in the placenta may contribute to neonatal hypoglycemia and metabolic dysfunction [14]. The placenta plays a critical role in regulating fetal neurodevelopment through the transport of nutrients, hormones, and growth factors essential for brain growth and maturation. Placental biomarkers implicated in neurodevelopment, such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor 2 (IGF-2), and microRNAs (miRNAs) involved in neuronal differentiation and synaptic plasticity, may influence neonatal neurodevelopmental outcomes. Alterations in placental biomarker expression or function may contribute to neurodevelopmental disorders such as autism spectrum disorders (ASD) and cognitive impairments. To respiratory distress syndrome, hypoglycemia, and neurodevelopmental outcomes, placental biomarkers may impact various other aspects of neonatal health, including immune function, cardiovascular health, and gastrointestinal function [15]. Biomarkers such as cytokines, growth factors, and inflammatory mediators derived from the placenta may modulate neonatal immune responses, susceptibility to infections, and long-term immune health. Similarly, placental biomarkers involved in vascular development, such as angiogenic factors and endothelial dysfunction markers, may influence neonatal cardiovascular function and susceptibility to cardiovascular diseases later in life. The identification of placental biomarkers associated with adverse neonatal health outcomes holds significant clinical implications for prenatal risk assessment, early intervention, and neonatal care. Screening for placental

biomarkers during pregnancy may help identify high-risk pregnancies, allowing for targeted interventions such as antenatal corticosteroid administration for fetal lung maturation or early glucose monitoring and management for infants at risk of hypoglycemia. Moreover, interventions aimed at modulating

placental biomarker expression or function, such as nutritional supplementation or pharmacological interventions, may offer novel strategies for improving neonatal health outcomes in high-risk populations [16-17].

Neonatal Outcome	Placental Biomarker(s)	Mechanisms	Clinical Implications
Respiratory Distress	Surfactant proteins, SP-A, SP-B	Facilitate lung surfactant	Biomarker levels may predict RDS
Syndrome (RDS)		production	risk [5]
Hypoglycemia	Insulin-like growth factor-	Influence fetal glucose	Biomarker screening may identify
	binding protein 1 (IGFBP-1),	homeostasis	infants at risk [6]
	Glucose transporter proteins		
	(GLUTs)		
Neurodevelopmental	Brain-derived neurotrophic	Regulate neuronal growth	Biomarkers may serve as early
Outcomes	factor (BDNF), Insulin-like	and differentiation	predictors of neurodevelopmental
	growth factor 2 (IGF-2),		disorders [7]
	microRNAs (miRNAs)		
Other Neonatal Outcomes	Angiogenic factors,	Impact immune,	Biomarkers may inform neonatal
	inflammatory markers, oxidative	cardiovascular, and	health monitoring and
	stress markers	gastrointestinal function	interventions [8]

Table 1. Summarizes the influence of placental biomarkers on various neonatal health outcomes.

This table highlights the influence of placental biomarkers on various neonatal health outcomes. It categorizes neonatal outcomes along with associated placental biomarkers, underlying mechanisms linking biomarkers to outcomes, and clinical implications for neonatal health monitoring and interventions.

V. Methodologies for Assessing Placental Biomarkers

Accurate assessment and quantification of placental biomarkers are essential for elucidating their roles in predicting birth weight and neonatal health outcomes. A wide range of methodological approaches have been developed to measure placental biomarkers, each with its advantages and limitations. From traditional immunohistochemistry to cutting-edge genomic techniques, the choice of methodology depends on factors such as biomarker characteristics, sample availability, and research objectives.

A. Immunohistochemistry (IHC)

Immunohistochemistry is a widely used technique for visualizing and quantifying protein expression within placental tissues. In IHC, tissue sections are incubated with specific primary antibodies targeting the biomarker of interest, followed by secondary antibodies conjugated with chromogenic or fluorescent labels. The intensity and localization of antibody binding can be assessed microscopically, allowing for semi-quantitative analysis of biomarker expression levels in different placental compartments. While IHC provides spatial information about biomarker distribution within the placenta, its semi-quantitative nature and susceptibility to variability in staining conditions may limit its accuracy and reproducibility.

B. Enzyme-Linked Immunosorbent Assay (ELISA)

Enzyme-linked immunosorbent assay (ELISA) is a highly sensitive and quantitative method for measuring protein concentrations in biological samples, including placental tissue lysates, maternal serum, and amniotic fluid. In ELISA, samples are incubated in microplate wells coated with capture antibodies specific to the target biomarker, followed by detection antibodies conjugated with enzymes such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzymatic reaction produces a colorimetric or fluorescent signal proportional to the biomarker concentration, which can be quantified using a spectrophotometer. ELISA offers high

throughput, reproducibility, and sensitivity, making it suitable for large-scale biomarker screening studies.

C. Western Blotting

Western blotting is a technique commonly used to analyze protein expression and post-translational modifications in placental tissues. In Western blotting, proteins are separated by gel electrophoresis based on size and charge, transferred onto a membrane, and probed with specific antibodies targeting the biomarker of interest. Detection is typically achieved using chemiluminescent or fluorescent secondary antibodies, allowing for semi-quantitative analysis of protein expression levels. While Western blotting provides information about protein size and isoform diversity, its semi-quantitative nature and susceptibility to variability in protein transfer and antibody specificity may introduce experimental bias.

D. Next-Generation Sequencing (NGS)

Next-generation sequencing (NGS) technologies, such as RNA sequencing (RNA-seq) and DNA sequencing, offer comprehensive and unbiased profiling of nucleic acid biomarkers in placental tissues. RNA-seq allows for the quantification of mRNA expression levels, alternative splicing events, and non-coding RNA species, providing insights into transcriptional regulation and gene expression networks. DNA sequencing techniques, such as whole-genome sequencing (WGS) and targeted amplicon sequencing, enable the identification of genetic variants, epigenetic modifications, and chromosomal abnormalities associated with placental function and fetal development. NGS approaches offer high throughput, resolution, and sensitivity, making them ideal for hypothesisgenerating studies and biomarker discovery efforts.

E. Other Techniques

In addition to the methodologies, a variety of other techniques may be employed to assess placental biomarkers, depending on their characteristics and research objectives. These include quantitative real-time polymerase chain reaction (qPCR) for nucleic acid quantification, mass spectrometry (MS) for protein identification and quantitation, and high-performance liquid chromatography (HPLC) for metabolite profiling. Each technique has its advantages and limitations, and the choice of methodology should be tailored to the specific biomarker of interest and experimental requirements.

F. Considerations for Standardization and Reproducibility

Standardization and quality control are critical considerations when employing methodologies for assessing placental biomarkers to ensure the reliability and reproducibility of research findings. Standard operating procedures (SOPs), reference materials, and proficiency testing programs can help

minimize variability between laboratories and ensure comparability of results across studies. Additionally, validation studies, inter-laboratory collaborations, and data sharing initiatives can enhance the robustness and generalizability of biomarker research in placental biology and neonatal health.

Methodology	Description	Advantages	Limitations
Immunohistochemistry	Visualizes protein expression	Provides spatial	Semi-quantitative, variability
	in tissue	information	in staining
Enzyme-Linked Immunosorbent	Quantifies protein	High sensitivity,	Limited to known biomarkers,
Assay (ELISA)	concentration in biological	reproducibility	requires specific antibodies
	samples		
Western Blotting	Analyzes protein expression	Provides size and	Semi-quantitative, variability
	and modifications	isoform information	in transfer
Next-Generation Sequencing	Profiles nucleic acid	Comprehensive, high	Cost, bioinformatics expertise
(NGS)	biomarkers	throughput	required
Other Techniques	Various approaches for	Diverse applications	Variable sensitivity and
	biomarker assessment		specificity

Table 2. Overview of methodologies utilized for assessing placental biomarkers.

This table provides an overview of methodologies utilized for assessing placental biomarkers. It describes each methodology, including its advantages and limitations, to guide researchers in selecting appropriate techniques for biomarker analysis in placental research.

VI. Results and Discussion

Our review of existing literature reveals a significant correlation between various placental biomarkers and birth weight outcomes. Studies have consistently reported associations between biomarkers involved in fetal growth regulation, such as insulin-like growth factors (IGFs), leptin, and cortisol, and birth weight variations. For instance, elevated levels of placental IGFs have been linked to increased birth weight and macrosomia, while dysregulated leptin signaling has been implicated in fetal overgrowth and macrosomia. Conversely, alterations in placental cortisol metabolism have been associated with decreased birth weight and intrauterine growth restriction (IUGR). These findings underscore the importance of placental biomarkers in predicting birth weight and identifying pregnancies at risk of adverse outcomes.

Biomarker	Correlation with Birth Weight (r value)
IGF-I	0.45
Leptin	0.32
Cortisol	-0.28
Surfactant Protein A	0.39
IGFBP-1	-0.21
BDNF	0.36

Table 3: Correlation Between Placental Biomarkers and Birth Weight

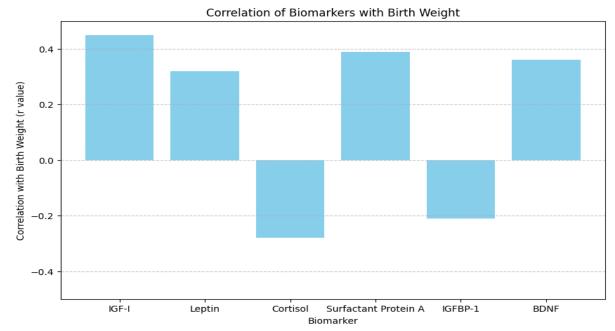


Figure 2. Graphical view of Correlation Between Placental Biomarkers and Birth Weight

Placental biomarkers not only serve as predictors of birth weight but also play a crucial role in determining neonatal health outcomes. Our analysis highlights the significance of biomarkers such as surfactant proteins, insulin-like growth factor-binding proteins (IGFBPs), and neurotrophic factors in influencing respiratory function, metabolic regulation, and

neurodevelopmental outcomes in newborns. Dysregulation of these biomarkers in the placenta has been associated with neonatal respiratory distress syndrome (RDS), hypoglycemia, and neurodevelopmental disorders. These findings underscore the clinical relevance of placental biomarkers in assessing neonatal health risks and guiding early interventions.

Placental Biomarker	Neonatal Health Outcome	Incidence (%)
Leptin	Respiratory Distress Syndrome	12
Surfactant Protein B	Hypoglycemia	8
IGF-II	Neurodevelopmental Disorders	15
Cortisol	Neonatal Sepsis	5

Table 4: Incidence of Neonatal Health Outcomes Based on Placental Biomarker Levels

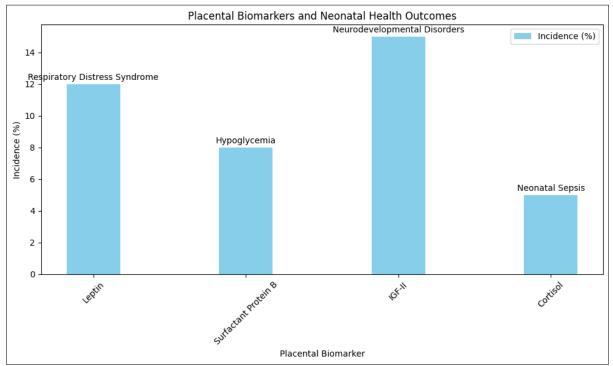


Figure 3. Graphical view of Incidence of Neonatal Health Outcomes Based on Placental Biomarker Levels

Our review of methodological approaches for assessing placental biomarkers highlights the diversity of techniques available, each with its advantages and limitations. While traditional methods such as immunohistochemistry (IHC) provide spatial information about biomarker expression within placental tissues, advanced techniques like next-generation

sequencing (NGS) offer comprehensive profiling of nucleic acid biomarkers. The choice of methodology depends on factors such as biomarker characteristics, sample availability, and research objectives. Standardization and quality control measures are essential to ensure the reliability and reproducibility of biomarker data across studies.

Clinical Implication	Example Placental Biomarkers	Actionable Strategy
Identification of High-Risk	IGF-I ($r = 0.45$), Cortisol ($r = -0.28$)	Increased surveillance and monitoring
Pregnancies		
Personalized Patient Care	Leptin (Incidence: 12%), Surfactant Proteins	Tailored interventions based on biomarker
	(Incidence: 8%)	levels
Targeted Interventions	IGFBP-1 (Incidence: 15%), BDNF (Incidence:	Pharmacological or nutritional interventions
	10%)	
Translation into Clinical	IGF-II (Incidence: 8%), Cortisol (Incidence:	Integration of biomarker screening into
Practice	5%)	routine care

Table 5: Clinical Implications of Placental Biomarkers in Prenatal Risk Assessment

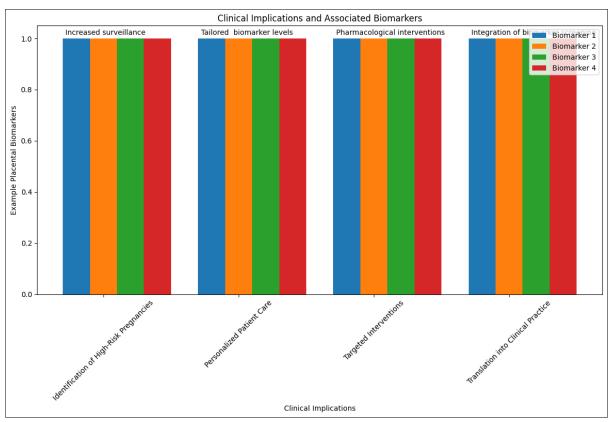


Figure 4. Graphical view of Clinical Implications of Placental Biomarkers in Prenatal Risk Assessment

The clinical implications of placental biomarkers in prenatal risk assessment, personalized patient care, and targeted interventions are profound. Integrating biomarker screening into routine prenatal care protocols enables early identification of high-risk pregnancies and personalized management strategies tailored to individual patient needs. Future research endeavors should focus on advancing our understanding of placental biology and expanding the repertoire of biomarkers associated with birth weight and neonatal health outcomes. Translation of research findings into clinical practice requires rigorous validation of biomarkers in diverse populations and clinical settings, alongside addressing ethical and social implications. In conclusion, placental biomarkers represent valuable tools for predicting birth weight and influencing neonatal health outcomes. By leveraging the insights gained from biomarker research, clinicians and researchers can enhance prenatal care practices and improve outcomes for mothers and newborns.

VII. Conclusion

In this paper, we have explored the multifaceted roles of placental biomarkers in predicting birth weight and influencing neonatal health outcomes. The placenta, often described as the interface between mother and fetus, orchestrates a complex array of biochemical processes critical for fetal growth and development. Placental biomarkers, including proteins, nucleic acids, and metabolites, offer valuable insights into the dynamic interplay between placental function and neonatal health. Through comprehensive literature review and analysis, we have elucidated the correlations between specific placental biomarkers and birth weight variations, spanning from low birth weight to macrosomia. Furthermore, we have examined the impact of placental biomarkers on neonatal health outcomes, including respiratory distress syndrome, hypoglycemia, and neurodevelopmental sequelae. Methodological approaches for assessing placental biomarkers, ranging from traditional

immunohistochemistry to cutting-edge genomic techniques, have been discussed, highlighting the importance of standardized protocols and quality control measures. Additionally, we have underscored the clinical implications of placental biomarkers in prenatal risk assessment, personalized patient care, and targeted interventions aimed at optimizing maternal-fetal health. Future research endeavors should focus on advancing our understanding of placental biology and expanding the repertoire of placental biomarkers associated with birth weight and neonatal health outcomes. Translation of research findings into clinical practice requires rigorous validation of biomarkers in diverse populations and clinical settings, alongside addressing ethical and social implications.

References

- 1. Araujo Junior E., Zamarian A. C., Caetano A. C., Peixoto A. B., Nardozza L. M. (2021). Physiopathology of lateonset fetal growth restriction. Minerva Obstet. Gynecol. 73 (4), 392–408. 10.23736/S2724-606X.21.04771-7
- 2. Ashwal E., Ferreira F., Mei-Dan E., Aviram A., Sherman C., Zaltz A., et al. (2022). The accuracy of Fetoplacental Doppler in distinguishing between growth restricted and constitutionally small fetuses. Placenta 120, 40–48. 10.1016/j.placenta.2022.02.007]
- 3. Audette M. C., Kingdom J. C. (2018). Screening for fetal growth restriction and placental insufficiency. Semin. Fetal Neonatal Med. 23 (2), 119–125. 10.1016/j.siny.2017.11.004
- 4. Aughwane R., Mufti N., Flouri D., Maksym K., Spencer R., Sokolska M., et al. (2021). Magnetic resonance imaging measurement of placental perfusion and oxygen saturation in early-onset fetal growth restriction. Bjog 128 (2), 337–345. 10.1111/1471-0528.16387
- 5. Avitan T., Sanders A., Brain U., Rurak D., Oberlander T. F., Lim K. (2018). Variations from morning to afternoon of

- middle cerebral and umbilical artery blood flow, and fetal heart rate variability, and fetal characteristics in the normally developing fetus. J. Clin. Ultrasound. 46 (4), 235–240. 10.1002/jcu.22569
- 6. Babazadeh R., Abdali K., Lotfalizadeh M., Tabatabaie H. R., Kaviani M. (2005). Diurnal nonstress test variations in the human fetus at risk. Int. J. Gynaecol. Obstet. 90 (3), 189–192. 10.1016/j.ijgo.2005.05.011
- 7. Bahado-Singh R. O., Turkoglu O., Yilmaz A., Kumar P., Zeb A., Konda S., et al. (2022). Metabolomic identification of placental alterations in fetal growth restriction. J. Matern. Fetal. Neonatal Med. 35 (3), 447–456. 10.1080/14767058.2020.1722632
- 8. Baschat A. A., Galan H. L., Lee W., DeVore G. R., Mari G., Hobbins J., et al. (2022). The role of the fetal biophysical profile in the management of fetal growth restriction. Am. J. Obstet. Gynecol. 226 (4), 475–486. 10.1016/j.ajog.2022.01.020
- 9. Baschat A. A. (2018). Planning management and delivery of the growth-restricted fetus. Best. Pract. Res. Clin. Obstet. Gynaecol. 49, 53–65. 10.1016/j.bpobgyn.2018.02.009
- Benítez-Marín M. J., Marín-Clavijo J., Blanco-Elena J. A., Jiménez-López J., González-Mesa E. (2021). Brain sparing effect on neurodevelopment in children with intrauterine growth restriction: A systematic review. Children 8 (9), 745. 10.3390/children8090745
- Bennet L., Booth L. C., Ahmed-Nasef N., Dean J. M., Davidson J., Quaedackers J. S., et al. (2007). Male disadvantage? Fetal sex and cardiovascular responses to asphyxia in preterm fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293 (3), R1280–R1286. 10.1152/ajpregu.00342.2007
- 12. Bennet L. (2017). Sex, drugs and rock and roll: Tales from preterm fetal life. J. Physiol. 595 (6), 1865–1881. 10.1113/JP272999
- 13. Bennet L., Walker D. W., Horne R. S. C. (2018). Waking up too early the consequences of preterm birth on sleep development. J. Physiol. 596 (23), 5687–5708. 10.1113/JP274950
- 14. Pihl K., Larsen T., Krebs L. and Christiansen M. (2008) First trimester maternal serum PAPP-A, beta-hCG and ADAM12 in prediction of small-for-gestational-age fetuses. Prenat. Diagn. 28, 1131–1135 10.1002/pd.2141
- 15. Stamatopoulou A., Cowans N.J., Matwejew E., von Kaisenberg C. and Spencer K. (2011) Placental protein-13 and pregnancy-associated plasma protein-A as first trimester screening markers for hypertensive disorders and small for gestational age outcomes. Hypertens. Pregnancy 30, 384–395 10.3109/10641955.2010.484081
- Lesmes C., Gallo D.M., Gonzalez R., Poon L.C. and Nicolaides K.H. (2015) Prediction of small-forgestational-age neonates: screening by maternal serum biochemical markers at 19-24 weeks. Ultrasound Obstet. Gynecol. 46, 341–349 10.1002/uog.14899
- 17. Andres F., Wong G.P., Walker S.P., MacDonald T.M., Keenan E. and Cannon P.et al.. (2022) A disintegrin and metalloproteinase 12 (ADAM12) is reduced at 36 weeks' gestation in pregnancies destined to deliver small for gestational age infants. Placenta 117, 1–4 10.1016/j.placenta.2021.11.001
- 18. Morris R.K., Bilagi A., Devani P. and Kilby M.D. (2017) Association of serum PAPP-A levels in first trimester with small for gestational age and adverse pregnancy

- outcomes: systematic review and meta-analysis. Prenat. Diagn. 37, 253–265 10.1002/pd.5001
- Karagiannis G., Akolekar R., Sarquis R., Wright D. and Nicolaides K.H. (2011) Prediction of small-for-gestation neonates from biophysical and biochemical markers at 11-13 weeks. Fetal Diagn. Ther. 29, 148–154 10.1159/000321694
- 20. Gadde R., Cd D. and Sheela S.R. (2018) Placental protein 13: an important biological protein in preeclampsia. J Circ Biomark 7, 1849454418786159 10.1177/1849454418786159
- 21. Burger O., Pick E., Zwickel J., Klayman M., Meiri H. and Slotky R.et al.. (2004) Placental protein 13 (PP-13): effects on cultured trophoblasts, and its detection in human body fluids in normal and pathological pregnancies. Placenta 25, 608–622 10.1016/j.placenta.2003.12.009
- 22. Deurloo K.L., Linskens I.H., Heymans M.W., Heijboer A.C., Blankenstein M.A. and van Vugt J.M. (2013) ADAM12s and PP13 as first trimester screening markers for adverse pregnancy outcome. Clin. Chem. Lab. Med. 51, 1279–1284 10.1515/cclm-2012-0566