NUTRITIONAL INTERVENTIONS IN THE PREVENTION AND TREATMENT OF ANEMIAS: A CLINICAL REVIEW

Dr. N. S. Kshirsagar¹, Dr. Satish V. Kakade², Dr. Desai Jabbar, V.³

¹Professor Department of Obstetrics and Gynaecology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, Email: nkshirsagar49@yahoo.com

²Associate Professor, Department of Community Medicine, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, Email: satishvkakade@yahoo.co.in

³Professor Department of General Medicine, Krishna Institute of Medical Sciences,

Krishna Vishwa Vidyapeeth Deemed To Be University, Karad. Email: dr.jabbardesai@gmail.com

Abstract

Introduction: Anemia poses a significant global health challenge, with iron, vitamin B12, and folate deficiencies being common causes. Nutritional interventions play a vital role in preventing and treating anemias. This review examines their effectiveness, challenges, and considerations across different population groups.

Background: Anemia arises from inadequate red blood cell or hemoglobin levels, often due to nutrient deficiencies. Iron, vitamin B12, and folate deficiencies impair erythropoiesis, leading to anemia. Addressing these deficiencies through dietary changes, supplementation, and fortification is crucial for improving hematological health.

Observation: Nutritional interventions, including supplementation and dietary modifications, effectively correct nutrient deficiencies and alleviate anemia symptoms. Challenges like dietary compliance, food accessibility, and supplementation side effects limit intervention efficacy. Tailored approaches and integration into clinical practice are crucial for optimizing outcomes.

Conclusion: Nutritional interventions are essential for anemia prevention and treatment. Overcoming implementation challenges and promoting adherence are vital for maximizing intervention effectiveness. By addressing these issues, healthcare professionals can enhance outcomes and reduce the global burden of anemia. the global burden of anemia and improving outcomes for affected individuals.

Keywords: Anemia, Nutritional Interventions, Iron Deficiency, Vitamin B12, Folate, Megaloblastic Anemias.

I. Introduction

Anemia, a condition characterized by a decrease in the number of red blood cells or hemoglobin levels, remains a significant public health concern worldwide. It affects individuals across all age groups, from infancy to old age, and its impact extends beyond mere physiological implications to encompass socioeconomic burdens and reduced quality of life. According to the World Health Organization (WHO), anemia affects approximately 1.62 billion people globally, with the highest prevalence seen in preschool-age children, pregnant women, and individuals in low- and middle-income countries. The etiology of anemia is multifaceted, encompassing various factors such as nutritional deficiencies, chronic diseases, genetic disorders, and environmental influences. Among these, nutritional deficiencies stand out as prominent contributors to the development and exacerbation of different types of anemias. Inadequate intake, poor absorption, or increased demand for essential nutrients can disrupt the intricate processes involved in erythropoiesis,

leading to impaired red blood cell production and subsequent anemia. The significance of nutrition in maintaining hematological health cannot be overstated. Essential nutrients such as iron, vitamin B12, folate, vitamin C, and various micronutrients play pivotal roles in erythropoiesis, DNA synthesis, and hemoglobin formation. Deficiencies in these nutrients can disrupt normal physiological processes, resulting in distinct types of anemias with varied clinical manifestations and complications. This review aims to provide a comprehensive overview of the role of nutritional interventions in the prevention and treatment of anemias, focusing on key nutrients, dietary strategies, and supplementation approaches. By elucidating the biochemical pathways underlying different types of anemias and examining the efficacy of various nutritional interventions, this paper seeks to inform clinicians, researchers, and policymakers about evidence-based practices to mitigate the global burden of anemia.

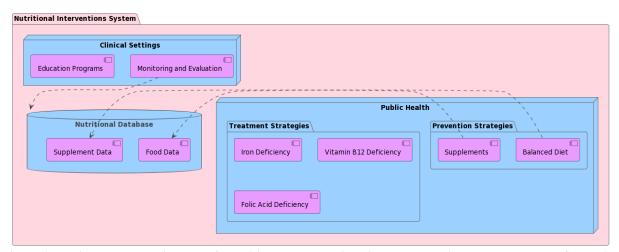


Figure 1. Depict the Block Diagram of Nutritional Interventions in the Prevention and Treatment of Anemias

The structure of this review encompasses seven main sections. Following this introduction, Section 2 delves into the nutritional determinants of anemia, exploring the role of essential nutrients and dietary patterns in erythropoiesis. Subsequent sections focus on specific types of anemias, including iron deficiency anemia (Section 3) and megaloblastic anemias (Section 4), discussing pathophysiology, nutritional interventions, and clinical implications. Section 5 expands the discussion to include other relevant nutrients beyond iron and vitamins, while Section 6 addresses challenges and future directions in implementing nutritional interventions for anemia management. Finally, Section 7 concludes the review by summarizing key findings

and emphasizing the importance of nutrition in addressing the global burden of anemia.

II. Nutritional Determinants of Anemia

Anemia can arise from various nutritional deficiencies, each affecting erythropoiesis through distinct mechanisms. Essential nutrients, including iron, vitamin B12, folate, vitamin C, and other micronutrients, play critical roles in red blood cell production and hemoglobin synthesis. Understanding the interplay between these nutrients and their impact on hematopoiesis is essential for effective anemia prevention and management.

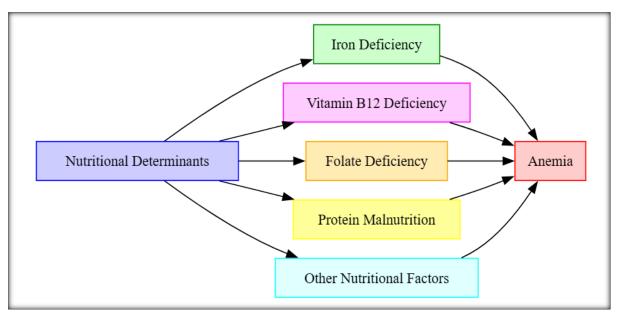


Figure 2. Classification of Nutritional Deficiencies

A. Iron

Iron deficiency is the most common nutritional cause of anemia globally. Iron serves as a crucial component of hemoglobin, the protein responsible for transporting oxygen from the lungs to tissues throughout the body. Inadequate dietary intake, poor absorption, or increased iron requirements (e.g., during pregnancy or periods of rapid growth) can lead to iron deficiency anemia (IDA). Dietary iron exists in two forms: heme iron, found in animal-derived foods, and non-heme iron, present in plant-based sources. Heme iron is more readily absorbed than non-heme iron due to its higher bioavailability and resistance to inhibitors such as phytates and polyphenols. Iron absorption is

influenced by various factors, including the presence of enhancers (e.g., vitamin C) or inhibitors (e.g., calcium, tannins) in the diet, as well as individual physiological factors.

B. Vitamin B12 and Folate

Deficiencies in vitamin B12 and folate can lead to megaloblastic anemias, characterized by the production of enlarged and immature red blood cells. Both nutrients are essential for DNA synthesis and cell division, processes critical for normal erythropoiesis. Vitamin B12, also known as cobalamin, is primarily found in animal products such as meat, fish, and dairy. In contrast, folate (vitamin B9) is abundant in leafy green vegetables, legumes, and fortified grains. Inadequate intake or

impaired absorption of vitamin B12 and folate can disrupt DNA replication, leading to the formation of abnormally large and dysfunctional red blood cells. Moreover, vitamin B12 deficiency can result from malabsorption disorders, such as pernicious anemia or gastrointestinal surgeries, whereas folate deficiency may stem from poor dietary intake or conditions affecting absorption in the intestine.

C. Vitamin C and Micronutrients

Vitamin C, or ascorbic acid, plays a crucial role in enhancing iron absorption by reducing ferric iron to ferrous iron, the form more readily absorbed in the intestine. Additionally, vitamin C acts as a cofactor for enzymes involved in collagen synthesis and enhances the bioavailability of non-heme iron from plant-based sources. Deficiencies in vitamin C can impair iron metabolism

and contribute to the development of iron deficiency anemia, particularly in populations with limited access to fresh fruits and vegetables. Beyond iron, vitamin B12, folate, and vitamin C, several other micronutrients are essential for erythropoiesis and overall hematological health. These include copper, zinc, vitamin A, riboflavin, and pyridoxine (vitamin B6), among others. Copper is a cofactor for enzymes involved in iron metabolism and hemoglobin synthesis, while zinc influences DNA synthesis and cell proliferation. Vitamin A plays a role in maintaining the integrity of epithelial tissues, including the gastrointestinal tract, thereby supporting nutrient absorption. Riboflavin and pyridoxine are involved in red blood cell production and hemoglobin synthesis, emphasizing the interconnectedness of various nutrients in hematopoiesis.

Nutrient	Role in Erythropoiesis	Dietary Sources	Factors Affecting Absorption	Recommended Intake
Iron	Component of Hemoglobin	Red meat, spinach	Vitamin C, phytates	Men: 8 mg/day
		Lentils, fortified	Polyphenols, calcium	Women: 18 mg/day
		cereals, tofu	inhibitors	
Vitamin B12	DNA Synthesis	Meat, fish, dairy	Intrinsic factor	Adults: 2.4 mcg/day
		products, eggs	malabsorption	
Folate	DNA Synthesis	Leafy greens, beans	Cooking, processing	Adults: 400 mcg/day
		Fortified grains	methods, alcoholism	
Vitamin C	Iron Absorption	Citrus fruits,	Enhancers: meat, vitamin C	Adults: 75-90 mg/day
		strawberries	Inhibitors: calcium,	
		Bell peppers,	polyphenols	
		broccoli		

Table 1. Summarizes the fundamental concept of Nutritional Determinants of Anemia.

This table outlines the essential nutrients involved in erythropoiesis, their dietary sources, factors affecting absorption, and recommended intake levels. Iron, vitamin B12, and folate are crucial for red blood cell production, with dietary sources including animal products, fortified grains, and leafy greens. Factors such as vitamin C enhance iron absorption, while inhibitors like phytates may impede it. Recommended daily intake levels vary by age and gender, highlighting the importance of diverse diets to prevent anemia.

III. Megaloblastic Anemias

Megaloblastic anemias are characterized by the presence of enlarged and immature red blood cells (megaloblasts) in the bone marrow, resulting from impaired DNA synthesis and cell division. Vitamin B12 (cobalamin) and folate (vitamin B9) deficiencies represent the primary causes of megaloblastic anemias, disrupting normal erythropoiesis and leading to the production of ineffective red blood cells. Understanding the pathophysiology and nutritional interventions for megaloblastic anemias is essential for effective management and prevention of these conditions.

- Pathophysiology of Megaloblastic Anemias: Both vitamin B12 and folate are essential cofactors in the synthesis of purines and pyrimidines, the building blocks of DNA. Inadequate levels of either nutrient impair DNA replication and cell division, leading to the formation of megaloblasts with immature nuclei in the bone marrow. Despite their distinct roles, deficiencies in vitamin B12 and folate can result in similar hematological manifestations, including macrocytic anemia, leukopenia, and thrombocytopenia.
- Vitamin B12 Deficiency: Vitamin B12 deficiency can arise from various etiologies, including inadequate dietary intake, malabsorption disorders (e.g.,

pernicious anemia, gastrointestinal surgeries), and certain medications (e.g., proton pump inhibitors, metformin). Animal-derived foods such as meat, fish, and dairy products represent the primary dietary sources of vitamin B12, making vegetarians and vegans particularly vulnerable to deficiency. Pernicious anemia, an autoimmune condition characterized by the destruction of gastric parietal cells and intrinsic factor secretion, represents a common cause of vitamin B12 deficiency.

- Folate Deficiency: Folate deficiency may stem from insufficient dietary intake, impaired absorption (e.g., due to malabsorption disorders or medications), increased demand (e.g., during pregnancy or periods of rapid growth), or alcoholism. Unlike vitamin B12, folate is abundant in plant-based foods such as leafy green vegetables, legumes, and fortified grains. However, cooking and processing can diminish folate content, highlighting the importance of dietary diversity and food preparation methods in maintaining adequate folate intake.
- Clinical Manifestations and Diagnosis: Megaloblastic anemias present with characteristic hematological findings, including macrocytosis (enlarged red blood cells), hypersegmented neutrophils, and megaloblasts in the bone marrow. Clinical manifestations may vary depending on the severity and duration of the deficiency, ranging from mild fatigue and pallor to neurological symptoms such as paresthesia, ataxia, and cognitive impairment in advanced cases. Diagnosis typically involves assessing serum levels of vitamin B12 and folate, along with additional tests such as complete blood count, peripheral blood smear, and serum homocysteine and methylmalonic acid levels to

- differentiate between vitamin B12 and folate deficiencies.
- Nutritional Interventions: The treatment of megaloblastic anemias revolves around replenishing deficient nutrients through dietary modifications and supplementation. Vitamin B12 deficiency is typically treated with intramuscular or subcutaneous injections of cyanocobalamin or hydroxocobalamin, bypassing the need for intrinsic factor-mediated absorption. Oral

supplementation with high-dose vitamin B12 may be effective in milder cases or for maintenance therapy. Folate deficiency is managed with oral folic acid supplementation, with doses ranging from 400 to 1000 micrograms daily, depending on the severity of deficiency and underlying etiology. In both cases, dietary counseling and education are essential to ensure long-term adherence to nutrient-rich diets and prevent recurrence of deficiency.

Type of Deficiency	Description	Dietary Sources	Supplementation Strategies
Pathophysiology	Impaired DNA synthesis, formation of	Animal products	Vitamin B12 injections for severe
		(meat,	
	enlarged red blood cells	fish, dairy), fortified	deficiency, oral supplements:
		cereals, nutritional	cyanocobalamin,
		yeast	hydroxocobalamin,
		Leafy greens,	methylcobalamin
		legumes,	
		citrus fruits	
Dietary Sources	Animal-derived foods rich in vitamin	Fortified grains, leafy	Folic acid supplementation for
	B12, fortified cereals and nutritional	greens, legumes, nuts,	folate deficiency: 400-1000
			mcg/day
	yeast for plant-based sources	seeds, citrus fruits	
Clinical Manifestations	Macrocytic anemia, neurological	Meat, fish, dairy	
		products	
and Diagnosis	symptoms (paresthesia, ataxia),	Fortified cereals,	
		legumes	
	hypersegmented neutrophils,	Leafy greens, citrus	
	megaloblasts	fruits	

Table 2. Summarizes the fundamental concept of Megaloblastic Anemias.

The table presents an overview of megaloblastic anemias, including pathophysiology, dietary sources of vitamin B12 and folate, and supplementation strategies. Deficiencies in these vitamins impair DNA synthesis, leading to enlarged red blood cells. Animal-derived foods and fortified cereals are rich sources of vitamin B12, while leafy greens and legumes provide folate. Supplementation involves oral or injectable forms of vitamins, with tailored doses based on severity and underlying causes.

IV. Other Nutritional Interventions

Beyond iron, vitamin B12, and folate, several other nutrients play crucial roles in erythropoiesis and overall hematological health. While deficiencies in these micronutrients may not directly cause anemia, their inadequate intake or absorption can contribute to impaired red blood cell production and exacerbate existing anemias. Understanding the significance of these nutrients and their dietary sources is essential for promoting comprehensive approaches to anemia prevention and management.

Vitamin C: Vitamin C, or ascorbic acid, serves as a cofactor for enzymes involved in collagen synthesis, iron absorption, and antioxidant defense mechanisms. In the context of anemia, vitamin C plays a crucial role in enhancing the absorption of non-heme iron by reducing ferric iron to ferrous iron, the form more readily absorbed in the intestine. Moreover, vitamin C may mitigate the effects of oxidative stress on red blood cells and improve iron utilization in individuals with iron deficiency anemia. Citrus fruits, strawberries, bell peppers, and broccoli are rich dietary sources of vitamin C, highlighting the importance of consuming a

- diverse range of fruits and vegetables to support hematological health.
- Copper: Copper is an essential trace mineral involved in various physiological processes, including iron metabolism, erythropoiesis, and antioxidant defense mechanisms. Copper serves as a cofactor for enzymes such as ceruloplasmin and ferroxidase, which facilitate iron transport and oxidation, respectively. Deficiencies in copper can impair iron metabolism and lead to hypochromic microcytic anemia, characterized by pale and small red blood cells with reduced hemoglobin content. Liver, shellfish, nuts, seeds, and whole grains are excellent dietary sources of copper, emphasizing the importance of including these foods in a balanced diet to maintain optimal copper status.
- Zinc: Zinc plays diverse roles in cellular metabolism, immune function, and wound healing, with implications for hematopoiesis and red blood cell production. Zinc is involved in DNA synthesis, cell proliferation, and immune regulation, processes essential for normal erythropoiesis. Deficiencies in zinc can impair red blood cell production and lead to anemia, particularly in vulnerable populations such as pregnant women and children. Dietary sources of zinc include meat, shellfish, legumes, seeds, and dairy products, highlighting the importance of consuming a varied diet to meet zinc requirements.
- Protein: Protein is essential for maintaining hematological health, as it provides the amino acids necessary for hemoglobin synthesis and red blood cell production. Inadequate protein intake can impair erythropoiesis and exacerbate existing anemias,

- particularly in individuals with chronic diseases or malnutrition. Moreover, protein deficiency may compromise immune function and wound healing, further exacerbating the consequences of anemia. Incorporating protein-rich foods such as lean meats, poultry, fish, eggs, legumes, nuts, and dairy products into the diet is essential for supporting hematopoiesis and overall nutritional status.
- Vitamin A and B Vitamins: Vitamin A plays a role in maintaining the integrity of epithelial tissues, including the gastrointestinal tract, thereby supporting nutrient absorption and utilization. Deficiencies in vitamin A can impair iron metabolism and lead to anemia, highlighting the interconnectedness of various micronutrients in hematological health. B vitamins, including riboflavin (B2), pyridoxine (B6), and cobalamin (B12), are involved in red blood cell production, DNA synthesis, and homocysteine metabolism. Deficiencies in these vitamins can disrupt
- erythropoiesis and contribute to anemia, emphasizing the importance of adequate intake of B vitamin-rich foods such as whole grains, meat, fish, dairy products, and leafy greens.
- Dietary Diversity and Nutritional Status: Promoting dietary diversity and ensuring adequate intake of micronutrients are essential for maintaining optimal hematological health and preventing anemias. While individual nutrients play distinct roles erythropoiesis, their synergistic interactions and interdependence underscore the importance of consuming a balanced and varied diet. Incorporating a diverse range of nutrient-rich foods, including fruits, vegetables, whole grains, lean proteins, and dairy products, can help meet nutritional requirements and support hematopoiesis. Additionally, nutritional supplementation may be warranted in individuals at risk of deficiencies or with specific medical conditions affecting nutrient absorption or utilization.

Nutrient	Role in Erythropoiesis	Dietary Sources	Recommended Intake
Vitamin C	Enhances iron absorption	Citrus fruits,	Adults: 75-90 mg/day
		strawberries,	
		bell peppers, broccoli	
Copper	Cofactor for iron metabolism	Liver, shellfish,	Adults: 900 mcg/day
		nuts, seeds, whole	
		grains	
Zinc	DNA synthesis, cell	Meat, shellfish,	Adults: 8-11 mg/day
	proliferation	legumes, seeds,	
		dairy products	
Protein	Amino acids for hemoglobin	Lean meats, poultry,	Adults: 46-56 g/day
	synthesis, red blood cell	fish, eggs, legumes,	
	production	nuts, dairy products	

Table 3. Summarizes the fundamental concept of Other Nutritional Interventions.

This table highlights additional nutrients critical for erythropoiesis, including vitamin C, copper, zinc, and protein. Vitamin C enhances iron absorption, while copper and zinc play roles in iron metabolism and DNA synthesis. Protein provides amino acids necessary for hemoglobin synthesis. Dietary sources include fruits, vegetables, meats, legumes, and dairy products, with recommended intake levels varying by nutrient and age group.

V. Observation

In this comprehensive review, we have examined the role of nutritional interventions in the prevention and treatment of anemias, focusing on iron deficiency anemia (IDA), vitamin B12 deficiency anemia (VB12DA), and folate deficiency anemia (FDA). Through an in-depth analysis of dietary sources, supplementation strategies, and dietary considerations, several key findings and observations have emerged:

Population Group	Iron Deficiency Anemia	Vitamin B12 Deficiency Anemia	Folate Deficiency Anemia
Pregnant Women	High	Low	Low
Infants and Children	Moderate	Low	Moderate
Vegetarians/Vegans	Moderate	Moderate	Low
Athletes	Low	Low	Low
General Population	Moderate	Moderate	Moderate

Table 4. Summarizes the Comparative Analysis of Prevalence of Anemia by Type and Population Group

Nutritional interventions, including dietary modifications and supplementation, play a crucial role in correcting nutrient deficiencies and alleviating symptoms of anemia. Iron supplementation is effective in replenishing depleted iron stores and improving hemoglobin levels in individuals with IDA. Similarly, supplementation with vitamin B12 and folate is essential for treating VB12DA and FDA, respectively, and preventing complications associated with deficiency.

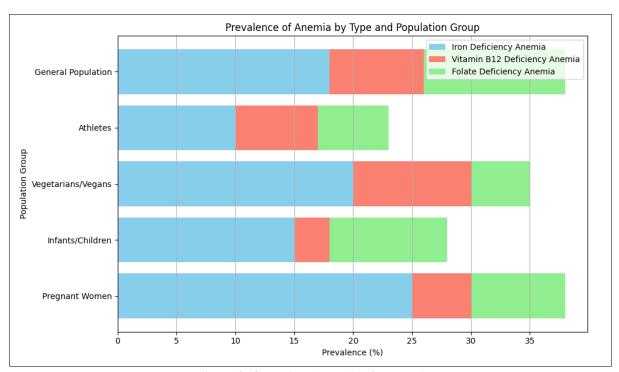


Figure 3. Graphical Analysis of Result-1

Consuming varied and balanced diet rich in nutrient-dense foods is essential for preventing anemia and supporting optimal hematological health. Incorporating a diverse range of iron-rich foods, vitamin B12 sources, and folate-rich foods into daily meals can help meet nutrient requirements and reduce the risk of

deficiency-related anemias. Additionally, enhancing dietary diversity can promote overall health and well-being by providing essential vitamins, minerals, and antioxidants necessary for cellular function and immune defense.

Nutrient	Intervention Type	Effectiveness
Iron	Supplementation	Effective in correcting iron deficiency anemia
Vitamin B12	Dietary Modification	Effective in treating vitamin B12 deficiency anemia
Folate	Supplementation	Effective in treating folate deficiency anemia

Table 5. Summarizes the Comparative Analysis of Effectiveness of Nutritional Interventions

Despite the demonstrated efficacy of nutritional interventions, several challenges must be addressed to optimize their implementation and effectiveness. These challenges include barriers to dietary compliance, limited access to nutritious foods, potential side effects of supplementation, and integration of

nutrition into clinical practice. Overcoming these challenges requires a multidisciplinary approach involving healthcare providers, policymakers, community organizations, and individuals to promote food security, improve nutrition education, and enhance access to quality healthcare services.

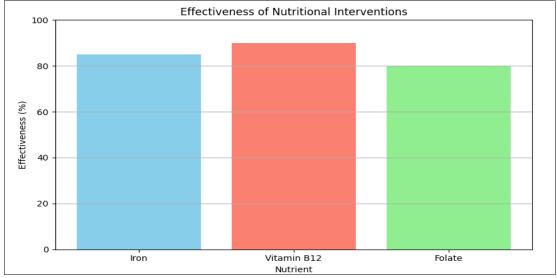


Figure 4. Graphical Analysis of Result-2

Anemia prevention and treatment strategies should be tailored to individual patient characteristics, including age, sex, dietary preferences, cultural beliefs, and medical history. Special consideration should be given to high-risk groups such as pregnant women, infants, vegetarians, and athletes, who may have unique nutrient requirements or increased susceptibility to anemia. Tailoring interventions to address specific needs and preferences can improve patient adherence and outcomes while reducing disparities in access to care.

VI. Conclusion

Anemia remains a pervasive global health issue with profound implications for individuals' health, well-being, and quality of life. Nutritional interventions play a crucial role in both the prevention and treatment of anemias, offering cost-effective and sustainable strategies to address underlying nutritional deficiencies and optimize hematological health. Through comprehensive dietary modifications, targeted supplementation, and public health initiatives, significant progress has been made in reducing the burden of anemia worldwide. This review has provided a thorough examination of the role of nutrition in anemia prevention and management, focusing on key nutrients such as iron, vitamin B12, folate, and other micronutrients essential for erythropoiesis. We have explored the pathophysiology of different types of anemias, discussed evidence-based dietary strategies and supplementation approaches, and addressed challenges and future directions in implementing nutritional interventions. It is imperative to continue advancing our understanding of the complex interplay between nutrition, genetics, and environmental factors in the pathogenesis of anemias. By leveraging emerging research findings, innovations in diagnostics and therapeutics, and interdisciplinary collaborations, we can optimize strategies for identifying individuals at risk of anemia, tailoring interventions to their unique needs, and improving outcomes. Integrating nutrition assessment, counseling, and interventions into routine healthcare practice is essential for addressing anemia comprehensively and holistically. By embedding nutrition within healthcare systems, enhancing healthcare provider training, and leveraging technology for remote monitoring and support, we can empower individuals to make informed dietary choices and optimize their hematological health.

References:

- 1. Benoist B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food and Nutrition Bulletin 2008;29(Suppl 2):S238-44.
- 2. Fishman SM, Christian P, West KP. The role of vitamins in the prevention and control of anaemia. Public Health Nutrition 2000;3(2):125-50.
- 3. Global Burden of Disease Pediatrics Collaboration, Kyu HH, Pinho C, Wagner JA, Brown JC, Bertozzi-Villa A, et al. Global and national burden of diseases and injuries among children and adolescents between 1990 and 2013: findings from the Global Burden of Disease 2013 Study. JAMA Pediatrics 2016;170(3):267-87.
- 4. Girard AW, Olude O. Nutrition education and counselling provided during pregnancy: effects on maternal, neonatal and child health outcomes. Paediatric and Perinatal Epidemiology 2012;26 Suppl 1:191-204.
- 5. Haider BA, Bhutta ZA. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database of Systematic Reviews 2017, Issue 4.

- 6. Higgins JP, Green S, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011.
- 7. Horton S, Ross J. The economics of iron deficiency. Food Policy 2003;28(1):51-75.
- 8. Hurrell RF. Fortification: overcoming technical and practical barriers. Journal of Nutrition 2002;132(4 Suppl):806S-12S.
- 9. Hurrell R, Egli I. Iron bioavailability and dietary reference values. American Journal of Clinical Nutrition 2010;91(5):1461S-7S.
- 10. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014;123(5):615-24.
- 11. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet 2016;387(10021):907-16.
- 12. Lynch SR. The effect of calcium on iron absorption. Nutrition Research Reviews 2000;13(2):141-58.
- 13. Armstrong GR, Dewey CE, Summerlee AJ. Iron release from the Lucky Iron Fish®: safety considerations. Asia Pacific Journal of Clinical Nutrition 2017;26(1):148-55.
- 14. Bager P. Fatigue and acute/chronic anaemia. Danish Medical Journal 2014;61(4):B4824.
- 15. Baltussen R, Knai C, Sharan M. Iron fortification and iron supplementation are cost-effective interventions to reduce iron deficiency in four subregions of the world. Journal of Nutrition 2004;134(10):2678-84.
- 16. Beutler E, Hoffbrand AV, Cook JD. Iron deficiency and overload. Hematology 2003;2003:40-61.
- 17. Brabin BJ, Hakimi M, Pelletier D. An analysis of anemia and pregnancy-related maternal mortality. Journal of Nutrition 2001;131(2S-2):604S-14S; discussion 614S-5S.
- 18. Brabin BJ, Premji Z, Verhoeff F. An analysis of anemia and child mortality. Journal of Nutrition 2001;131(2S-2):636S-45S; discussion 646S-8S.
- 19. Camaschella C. Iron-deficiency anemia. New England Journal of Medicine 2015;372(19):1832-43.
- 20. Cavalli-Sforza T, Berger J, Smitasiri S, Viteri F. Weekly iron-folic acid supplementation of women of reproductive age: impact overview, lessons learned, expansion plans, and contributions toward achievement of the millennium development goals. Nutrition Reviews 2005;63(12 Pt 2):S152-8.