PREPARATION OF TERMINALIA CHEBALA ETHANOLIC EXTRACT BASED MOUTHWASH AND ITS ANTIMICROBIAL AND CYTOTOXICITY EFFECT

V.Jaya Vabushana¹, T. Lakshmi², S. Rajeshkumar³

¹Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 77, Tamil Nadu,India.

Email id: 151801023.sdc@saveetha.com

²Professor, Department of Pharmacology,

Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 77, Tamil Nadu, India.

Email:lakshmi@saveetha.com

³Associate Professor, Department of Pharmacology,

Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 77, Tamil Nadu, India.

Email:ssrajeshkumar@hotmail.com

Corresponding author

T. Lakshmi

Professor, Department of Pharmacology, Saveetha dental college and Hospital, Saveetha Institute of Medical and technical sciences (SIMATS) Saveetha University, Chennai, India. Mail ID: lakshmi@saveetha.com.

Abstract

Antimicrobial activity is the process of killing or inhibiting the disease causing microorganisms. Many antimicrobial agents are used for this purpose. The effect of being harmful to cells caused by toxic agents is called cytotoxicity. Exposing cells to a cytotoxic agent may result in various outcomes in the functional and structural ability of cell. No challenges are faced in previous research. The research is needed to find whether the ethanolic extract of terminalia chebula extract mouthwash has antimicrobial activity and cytotoxicity. The research also fulfils the deficiency of work on comparing its antimicrobial activity on different families. The aim of the research is to find the antimicrobial and cytotoxicity effect of ethanolic extract of terminalia chebula extract mouthwash. For cytotoxicity effect, a total of 6 wells with salt water and 10 nauplii is taken and one well is controlled and the others are filled with 5, $10,20,40,80\mu$ l concentration of prepared mouthwash. left for 24hrs and the alive nauphlii in each. For antimicrobial activity, 25, 50, 100 μ l of prepared mouthwash and a mouthwash already available in the market are taken in the culture medium of 4 different microorganisms. and left for 24 hrs. the ethanolic extract mouthwash of t.chebula has higher antimicrobial activity than the mouthwash present in the market. And also has less cytotoxicity in its less concentration.

Keywords: Terminalia chebala; antimicrobial activity; Mouthwash

I

NTRODUCTION

Antimicrobial activity is the process of killing or inhibiting the disease causing microorganisms. Many antimicrobial agents are used for this purpose. Antimicrobial agents may be antibacterial, antifungal or antiviral(1). They all have different modes of action by which they try to kill or inhibit microbes. The main classes of antimicrobial agents are disinfectants (non-selective agents, like bleach), which kill a large range of microbes on non-living surfaces to forestall the spread of illness, antiseptics (which apply to living tissues and reduces the infection during surgery), and antibiotics(which

kills the microorganisms within the body)(2,3). The term antibiotic originally describes only those formulations derived from the living microbes but now it is applied to synthetic agents too, like sulfonamides or fluoroquinolones(4)(5). Though the term wants to be restricted to antibacterials (and is usually used as a synonym for them by medical professionals and in medical literature), its context has broadened to incorporate all antimicrobials(2,6). Antibacterial agents will be further subdivided into bactericidal agents, which kill bacteria, and bacteriostatic agents, which hamper or stall bacterial growth. In response, further advancements in antimicrobial

technologies have resulted in solutions that may transcend simply inhibiting microbial growth(7)(8). The effect of being harmful to cells caused by toxic agents is called cytotoxicity. Exposing cells to a cytotoxic agent may result in various outcomes in the functional and structural ability of cells. At this point, the affected cells will actively move into the death phase(9)(10). Cytotoxic agents are known as the substances that are toxic to the cells, which include the factors that inhibit or stop their growth and cause death, They are also used to treat certain disorders like cancer(11)(12). Chemical substances or biological substances or physical agents can also be cytotoxic that affect the cells in varying degrees(13,14). Cells undergoing necrosis show rapid swelling, lose membrane integrity, stop metabolism, and release their contents into the environment. Cells that undergo rapid necrosis in vitro don't have sufficient time or energy to activate apoptotic machinery and can not express apoptotic markers. Apoptosis is characterised by well defined cytological and molecular events including a change within the ratio of the cell, cytoplasmic shrinkage, nuclear condensation and cleavage of DNA into regularly sized fragments(15,16)(17). Cells in culture that are undergoing apoptosis eventually undergo secondary necrosis. they're going to close up metabolism, lose membrane integrity and lyse. Cytotoxicity testing is employed within the development of the many products starting from drugs to cosmetics. Plant products (that are going to be used for extracts, etc.) are tested for toxicity(18)(19)(20). A term called "selectivity index" explains the ratio between potential biological activity of a plant specimen in relation to its potential cytotoxicity. Terminalia chebula is used to cure high cholesterol and digestive disorders like diarrhoea, constipation, dysentery and indigestion(21,22)(23). They have also been used for HIV infection and sore eyes. it's used as a douche for

treating vaginal infections. Also used topically as a mouthwash and gargle. Terminalia chebula and Emblica officinalis is used to prevent death of heart tissue. Mouthwashes are also called oral rinse, it is a liquid product used to rinse your oral cavity. Some use this mouthwash to fight against bad breath, some use it to in a try to prevent tooth decay(24)(25)(26)(27). In this study the antimicrobial activity and cytotoxicity effects of the ethanolic extract of the terminalia chebula mouthwash is seen.No challenges are faced in previous research. The research is needed to find whether the ethanolic extract of terminalia chebula extract mouthwash has antimicrobial activity and cytotoxicity. The research also fulfils the deficiency of work on comparing its antimicrobial activity on different families. The aim of the research is to find the antimicrobial and cytotoxicity effect of ethanolic extract of terminalia chebula extract mouthwash.(28)(29)

Materials and methods

Ethanolic extract of t. chebula is prepared from the dried seeds of it. Then a mouthwash is prepared using this extract. sucrose , sodium benzoate, sodium lauryl sulfate are used to prepare the mouthwash. Sucrose is used as sweetening agent, sodium benzoate is used as preservative, and sodium lauryl sulfate is used as foaming agent. For antimicrobial activity, 25 , 50, 100 mue 1 of prepared mouthwash and a mouthwashalready available in the market are taken in culture medium of 4 different microorganisms. and left for 24 hrs. the zone of inhibition for e.fecalis, c. albicans, s.mutans, s.aureus. For cytotoxicity effect, a totalof 6 wells with salt water and 10 nauplii is taken and one well is controlled and the others are filled with 5, 10,20,40,80 mue 1 concentration of prepared mouthwash. left for 24hrs and the alive nauphlii in each.

RESULTS

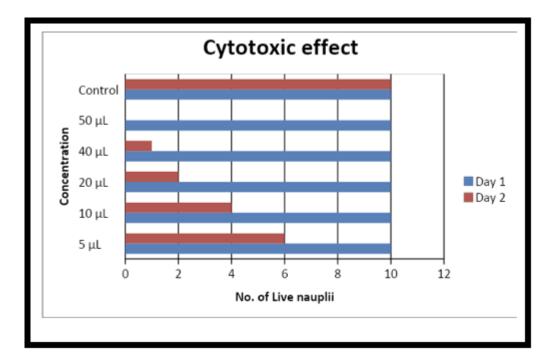


Figure 1: This bar graph shows the cytotoxicity of the mouthwash prepared from the ethanolic extract of terminalia chebula. X axis represents the number of live nauplii, Y axis represents the concentration. On day 1, in all the wells the mortality rate is 0%. In day 2, the 5 microliter concentration has 40% mortality, 10 microliter concentration has 60% mortality, 20 microliter concentration has 80% mortality, 40 microliter concentration has 90% mortality, 80 microliter concentration has 100% mortality, control has 0% mortality

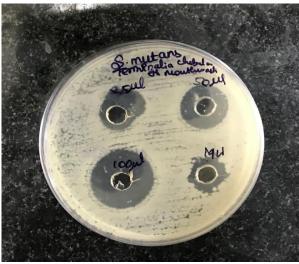


Figure:2

Figure: 4

Figure:3

Figure: 5

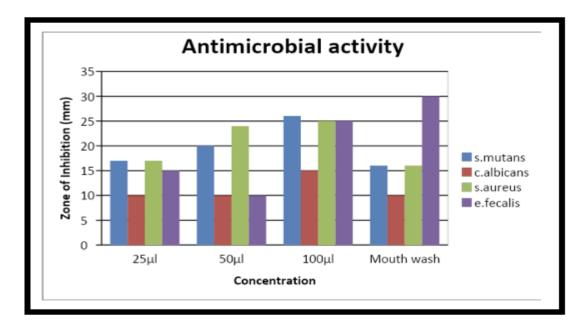


Figure 6 the given graph shows the antimicrobial activity of the mouthwash derived from ethanolic extract of terminalia chebula on 4 different microorganisms. The x axis represents the The organisms that are taken for experiment here are s.aureus, s.mutans, c.albicans, e.faecalis. And is also compared with the antimicrobial activity of the market mouthwash. The antimicrobial activity is calculated by the diameter of the zone of inhibition on different concentrations and the market mouthwash.

Discussion:

This study shows that the antimicrobial activity of the mouthwash prepared from the ethanolic extract of the terminalia chebula is much higher than the market mouthwash. It shows a 17mm zone of inhibition for s.mutans(fig.1) and s.aureus(fig.5), 10mm zone of inhibition for c.albicans(fig.3), 15mm for e.faecalis at 25 microliter(fig.4). In a 50 microliter it shows 20mm zone of inhibition for s. Mutans(fig.2), 10 mm zone of inhibition for c.albicans(fig.3) and e.faecalis(fig.4), 24mm zone of inhibition for s.aureus(fig.5). In 100 microlitre it shows a 26mm zone of inhibition for s. Mutans(fig.2), 25mm zone of inhibition for s.aureus(fig.5) and e.faecalis(fig4), 15mm zone of inhibition for c.albicans(fig.3). The market mouthwash, shows a 16mm zone of inhibition for s.mutans(fig.2), 10 mm zone of inhibition for c.albicans(fig.3) and e.faecalis(fig.4), 30mm zone of inhibition for s.aureus(fig.5). Hence the antimicrobial activity of the mouthwash prepared ethanolic extract of terminalia chebula is higher than the market mouthwash on s.aureus, s.mutans, c.albicans even in its lower concentrations. This extract mouthwash has lesser antimicrobial activity on e.faecalis when compared to market mouthwash. Even though there is a difference, the difference in the antimicrobial activity of the market mouthwash and ethanolic extract of terminalia chebula mouthwash has no greater difference. They almost have the same antimicrobial activity on e.faecalis.

The cytotoxicity effect test has also given great results, that the mouthwash shows less cytotoxicity. It shows only a 40% cytotoxicity effect on 5 microlitre concentration. Cytotoxicity effects can be reduced to an even lesser concentration.on higher concentration it is completely cytotoxic that is 100% mortality just like other market mouthwashes on higher concentration. The cytotoxicity is compared between prepared mouthwash and the controlwell after adding extract mouthwash and after 24 hours. Then life and mortality is counted. This study is limited with the antibacterial activity of specific types of microorganisms. Further researches on the antimicrobial activity of this extract for more other types of microorganisms' can be done. further research can be done in cytotoxicity of this extract in lower concentrations. Different types of chemical mouthwashes can also be compared with this Terminalia chebala ethanolic extract based Mouthwash.

Conclusion

Thus, the ethanolic extract mouthwash of t.chebula has higher antimicrobial activity than the mouthwash present in the market. And also has less cytotoxicity in its less concentration. It will be great option for the market mouthwashes.further studies have to be done to make it have a better taste and smell

Reference

- 1. Ekblad B. Antimicrobial activity assay v1 (protocols.io.i66chhe) [Internet]. protocols.io. Available from: http://dx.doi.org/10.17504/protocols.io.i66chhe
- Barma MD, Kannan SD, Indiran MA, Rajeshkumar S, Pradeep Kumar R. Antibacterial Activity of Mouthwash Incorporated with Silica Nanoparticles against S. aureus, S. mutans, E. faecalis: An in-vitro Study [Internet]. Journal of Pharmaceutical Research International. 2020. p. 25–33. Available from: http://dx.doi.org/10.9734/jpri/2020/v32i1630646
- 3. Rajeshkumar S, Kumar SV, Ramaiah A, Agarwal H, Lakshmi T, Roopan SM. Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and

- evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb Technol [Internet]. 2018 Oct;117:91–5. Available from: http://dx.doi.org/10.1016/j.enzmictec.2018.06.009
- 4. Tiwari A. Handbook of Antimicrobial Coatings [Internet]. Elsevier; 2017. 596 p. Available from: https://play.google.com/store/books/details?id=xbpvDgA AQBAJ
- 5. Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther [Internet]. 2021 Mar 18;12(1):192. Available from: http://dx.doi.org/10.1186/s13287-021-02265-1
- 6. Nandhini NT, Rajeshkumar S, Mythili S. The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation [Internet]. Vol. 19, Biocatalysis and Agricultural Biotechnology. 2019. p. 101138. Available from: http://dx.doi.org/10.1016/j.bcab.2019.101138
- 7. Vikneshan M, Saravanakumar R, Mangaiyarkarasi R, Rajeshkumar S, Samuel SR, Suganya M, et al. Algal biomass as a source for novel oral nano-antimicrobial agent [Internet]. Vol. 27, Saudi Journal of Biological Sciences. 2020. p. 3753–8. Available from: http://dx.doi.org/10.1016/j.sjbs.2020.08.022
- 8. Gnanavel V, Roopan SM, Rajeshkumar S. Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products [Internet]. Vol. 507, Aquaculture. 2019. p. 1–6. Available from: http://dx.doi.org/10.1016/j.aquaculture.2019.04.004
- 9. Ezhilarasan D, Apoorva VS, Ashok Vardhan N. Syzygium cumini extract induced reactive oxygen species-mediated apoptosis in human oral squamous carcinoma cells. J Oral Pathol Med [Internet]. 2019 Feb;48(2):115–21. Available from: http://dx.doi.org/10.1111/jop.12806
- Tallarico M, Fiorellini J, Nakajima Y, Omori Y, Takahisa I, Canullo L. Mechanical Outcomes, Microleakage, and Marginal Accuracy at the Implant-Abutment Interface of Original versus Nonoriginal Implant Abutments: A Systematic Review of In Vitro Studies [Internet]. Vol. 2018, BioMed Research International. 2018. p. 1–8. Available from: http://dx.doi.org/10.1155/2018/2958982
- 11. Vairavel M, Devaraj E, Shanmugam R. An eco-friendly synthesis of Enterococcus sp.-mediated gold nanoparticle induces cytotoxicity in human colorectal cancer cells. Environ Sci Pollut Res Int [Internet]. 2020 Mar;27(8):8166–75. Available from: http://dx.doi.org/10.1007/s11356-019-07511-x
- 12. Joseph B, Prasanth CS. Is photodynamic therapy a viable antiviral weapon against COVID-19 in dentistry? [Internet]. Vol. 132, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2021. p. 118–9. Available from: http://dx.doi.org/10.1016/j.oooo.2021.01.025
- 13. Nandhini JT, Ezhilarasan D, Rajeshkumar S. An ecofriendly synthesized gold nanoparticles induces cytotoxicity via apoptosis in HepG2 cells [Internet]. Vol. 36, Environmental Toxicology. 2021. p. 24–32. Available from: http://dx.doi.org/10.1002/tox.23007
- 14. Ganapathy D, Department of Prostodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, C, India. Nanobiotechnology in combating CoVid-19 [Internet]. Vol. 16, Bioinformation.

- 2020. p. 828–30. Available from: http://dx.doi.org/10.6026/97320630016828
- Herbal Products as Mouthwash [Internet]. Vol. 6, International Journal of Science and Research (IJSR).
 p. 1334–7. Available from: http://dx.doi.org/10.21275/art20175623
- 16. Alamgir ANM. Therapeutic Use of Medicinal Plants and Their Extracts: Volume 1: Pharmacognosy [Internet]. Springer; 2017. 546 p. Available from: https://play.google.com/store/books/details?id=VK80Dw AAQBAJ
- Arumugam P, George R, Jayaseelan VP. Aberrations of m6A regulators are associated with tumorigenesis and metastasis in head and neck squamous cell carcinoma. Arch Oral Biol [Internet]. 2021 Feb;122:105030. Available from: http://dx.doi.org/10.1016/j.archoralbio.2020.105030
- 18. De La Rosa AM. Cytotoxicity of Mouthwashes in Tissue Culture Systems [Internet]. 1966. 122 p. Available from: https://books.google.com/books/about/Cytotoxicity_of_Mouthwashes_in_Tissue_Cu.html?hl=&id=4QwGwgEACAA.I
- 19. Dua K, Wadhwa R, Singhvi G, Rapalli V, Shukla SD, Shastri MD, et al. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev Res [Internet]. 2019 Sep;80(6):714—30. Available from: http://dx.doi.org/10.1002/ddr.21571
- 20. Ramesh A, Varghese S, Jayakumar ND, Malaiappan S. Comparative estimation of sulfiredoxin levels between chronic periodontitis and healthy patients A casecontrol study. J Periodontol [Internet]. 2018 Oct;89(10):1241–8. Available from: http://dx.doi.org/10.1002/JPER.17-0445
- 21. Tabatabaei MH, Mahounak FS, Asgari N, Moradi Z.
 Cytotoxicity of the Ingredients of Commonly Used
 Toothpastes and Mouthwashes on Human Gingival
 Fibroblasts. Front Dent [Internet]. 2019 Nov;16(6):450–
 7. Available from:
 http://dx.doi.org/10.18502/fid.v16i6.3444
- 22. Rajasekaran S, Damodharan D, Gopal K, Rajesh Kumar B, De Poures MV. Collective influence of 1-decanol addition, injection pressure and EGR on diesel engine characteristics fueled with diesel/LDPE oil blends [Internet]. Vol. 277, Fuel. 2020. p. 118166. Available from: http://dx.doi.org/10.1016/j.fuel.2020.118166
- 23. Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog [Internet]. 2018 Apr;117:68–72. Available from: http://dx.doi.org/10.1016/j.micpath.2018.02.008
- 24. Legéňová K, Kovalčíková M, Černáková L, Bujdáková H. The Contribution of Photodynamic Inactivation vs. Corsodyl Mouthwash to the Control of Streptococcus mutans Biofilms. Curr Microbiol [Internet]. 2020 Jun;77(6):988–96. Available from: http://dx.doi.org/10.1007/s00284-020-01901-y
- 25. Raj R K, D E, S R. β-Sitosterol-assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell line. J Biomed Mater Res A [Internet]. 2020 Sep;108(9):1899–908. Available from: http://dx.doi.org/10.1002/jbm.a.36953

- 26. Gheena S, Ezhilarasan D. Syringic acid triggers reactive oxygen species-mediated cytotoxicity in HepG2 cells. Hum Exp Toxicol [Internet]. 2019 Jun;38(6):694–702. Available from: http://dx.doi.org/10.1177/0960327119839173
- 27. Ezhilarasan D, Sokal E, Najimi M. Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreat Dis Int [Internet]. 2018 Jun;17(3):192–7. Available from: http://dx.doi.org/10.1016/j.hbpd.2018.04.003
- 28. Shukla AK, Iravani S. Green Synthesis, Characterization and Applications of Nanoparticles [Internet]. Elsevier; 2018. 548 p. Available from: https://play.google.com/store/books/details?id=LzV8DwA AQBAJ
- 29. Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab J Gastroenterol [Internet]. 2018 Jun;19(2):56–64. Available from: http://dx.doi.org/10.1016/j.ajg.2018.03.002