ANTIBACTERIAL ACTIVITY OF ETHANOLIC AND METHANOLIC SEED EXTRACT OF FIVE CASSIA SPECIES AGAINST SOME PATHOGENIC **BACTERIA**

Najila Saleh Mahdi Abdelsaheb Alasady¹, Attyaf Jameel Thamir²

1,2University of Kufa, Faculty of Science, Biology Department, najlaas.abdulsahib@uokufa.edu.ig, atyaf.altameemi@uokufa.edu.iq

Abstract

Current investigation was accomplished at biology department/faculty of science/kufa university during 2023-2024. Seeds organic solvent extract was prepared using methanol and ethanol by Soxhlet) at three concentration (100mg/ml/,200mg/ml and 400 mg/ml) for five Cassia species (1-C. fistula, 2-C.bakeriana, 3-C.gluaca, 4-C.siamea 5-C.alata). examined bacterial strain were resistance to many antibiotics, slight variation observed between cassia species and between methanol and ethanol extract, high concentration produced highest bacterial growth inhibition. E.coli gave highest growth inhibition zone compared to S. aureus and K. pneumoniae . Both methanolic and ethanolic extract of examined Cassia species possess antibacterial activity against examined bacterial strains especially with increasing concentration compared to control (DMSO) treatment with exception of C.fistula methanolic extract at concentration of 100mg/ml against S. aureus and C.alata ethanolic extract at concentration of 100mg/ml against K. pneumonia ,both failed to give any antibacterial activity. C.siamea methanolic extract at concentration of 400mg/ml gave highest antibacterial activity against E.coli. Keywords: Cassia, antibacterial

Introduction

cases incorrect use of antibiotics we can see dramatic increase tropical and subtropical region (Hafez et al., 2019) in microbial resistance against antimicrobial agents that is a Genus Cassia revealed the isolation and separation of different effects (Bhalodia and Shukla, 2011).

specific illness (Seyyednejad et al., 2014), the raise of antibiotic compounds from different Cassia species (Caro et al., 2012) resistant pathogens is a growing concern all over the world and WHO assign it as an emerging public health problem (Soltan et Material and methods al.,2007)).

agents of UTI (urinary tract infection) (Golamreza and (1), leaf and flowers as in figure (2) Ali.,2011).

Herbal antimicrobials have contributed to the control of various diseases caused by icroorganisms (Anand et al.,2019). The World Health Organization (WHO) encourages, recommends, and promotes the inclusion of herbal medicines in national health care systems (WHO.,2019) This is due to the fact that they are easily available at low rates and are thought to be safer than modern synthetic medications (Alam and Mishra, 2017) It has been estimated that 80% of the world's population uses traditional plant medicines to meet their primary health care needs (WHO, 2017). Cassia L. is a big flowering plant genus Figure (1) Cassia species seeds including (1-C.fistula, 2-(Fabaceae) with three subgenera including Cassia L., Senna C.bakeriana, 3-C.gluaca, 4-C.siamea 5-C.alata) Mill., and Chamaecrista Moench. Recently, each of these

subgenera has been upgraded into genera using molecular

characters, notably DNA markers (Zibaee et al., 2023).

Some of them are used in traditional folk medicines as a Since the introduction of the antibiotics, they have been known laxative, purgative, antimalarial, ulcer healing, antidiabetic, as one of the most important tools against bacterial infections. hepatoprotective, nephroprotective, antitumor and also used in Although, in the past years due to the widespread and in some the treatment of skin infection and periodic fever throughout the

critical reason for finding new drugs with les resistance and side following classes of compounds: A number of authors isolated and identified several compounds from different Cassia species The medicinal plants have been used from ancient times such as anthraquinones, anthracenes, polyphenols, fatty acids, especially in Asia, and have been used for the treatment of sterols, polysaccharides and some other miscellaneous

Seeds of five Cassia species including (1-C. fistula,2-Bacteria such as Escherichia coli and Klebsiella spp., the main C.bakeriana, 3-C.gluaca, 4-C.siamea 5-C.alata) as in Figure

Figure (2) Cassia species leaf and flowers including (C.fistula, C.bakeriana, C.gluaca)

Plant extract preparation

Seeds of five Cassia species including (1-C.fistula, 2-C.bakeriana, 3-C.gluaca, 4-C.siamea 5-C.alata) were grineded individually using electrical grinder. Using 30g of each crushed plant material sample and loaded into the extraction thimble, 500 ml of (absolute ethanol and absolute methanol) separately was added to a round bottom flask, and heated at 40C° for 24 hours. Recovery of stock plant extract was done by heating at 40 C° using oven till drying. This extract consider as stock solution and used later to prepare different concentration (Al-Mohammad.,2010).

Micro organism growth inhibition

Bacterial (Escherichia coli, Staphylococcus aureus, klebsiella pneumoniae) samples were provided and identified from Al-Ameen labrotary /Holy Shrine.

Antibacterial activity

Preparation of bacterial suspension

The bacterial suspension was prepared by culturing bacteria on nutrient agar and incubation for 24 h at 37 C°, after 3-4 weeks, colony were taken to test tube contenting on nutrient broth and incubation for 4-5 h in 37 C°, later comparing with McFarland tube to obtained suitable turbidity . The turbidity produced by growth culture was calibrated with sterilized broth to achieve an optical density comparable to the 0.5 McFarland requirements (1.5 X 108 cells/ml the equivalent).

Antibiotic sensetivity test

Testing sensitivity of bacteria to some antibiotic was done using disc diffusion method by culturing each genus of bacteria on Muller Hinton agar ,then, spreading 0.1ml of bacterial suspension (which comparison with McFarland tube 0.5) on agar surface and put the antibiotic disc in each plate after then incubator all plate at 37 C for 24 h ,later measuring of inhibition zone(Josiphine et al.,2006)

Plant extract activity test

Plant extract examined at three concentrations (100mg/ml, 200 mg/ml, 400mg/ml) by dilution using DMSO using method of agar diffusion by well was used in susceptibility test for plant extract by making equal well in Muller Hinton with diameter of 6mm by cork borer and adding of 0.1 ml from each extract,

before this step, spreading of o.1 ml from bacterial suspension on surface of media ,after then incubation the plate over night in 37 °C and then measuring the diameter of inhibition zone to detect the activity of test plant extract on growth of bacteria using ruller (Egorove .,1985)

Results

Antibiotic sensetivity

Results shown in table (1) indicates that examined bacterial strains are resistant to many antibiotics, thus it was ideal to examine plant extract against them.

Table (1) Antibiotic sensitivity test for bacteria used in current study

Antibiotic	Bacterial response to antibiotic						
	S. aureus,	K. peunemoniae	E.coli				
	(gram	(gram negative)	(gram				
	posotive)		negative)				
CRO	R	R	R				
CAZ	R	R	R				
CTX	R	R	S				
CFM	R	R	R				
F	S	S	R				
CN	R	S	S				
AK	R	S	S				
TE	R	R	R				
TMP	R	S	S				
APX	R	R	R				
ATM		R	S				
AX	R	R	R				
NA	R	R	S				
CIP	R	S	S				
NOR	R	S	S				
OFX	R	S	S				
IPM		S	S				
MEM		S	S				
CO		S	R				
PRL		R	R				
PB		S					
AZM	R						
E	R						

Microorganisms can be either intrinsically resistant to an antibiotic or develope resistance following exposure to that antibiotic (acquired resistance), resistance can develop as a result of mutation or direct transfer of genes encoding a resistance mechanism (Livermore., 2004)

Genetic material, including antibiotic resistance genes, can spread very effectively between bacteria, even those of unrelated species, antibiotic resistance can be considered to be an inevitable consequence of antibiotic use, injudicious use of antibiotics is a major factor facilitating the emergence of resistance worldwide (Sabtu et al., 2016).

Table (2) Interaction among cassia species	, extract type, concentation and bacterial	I strain in antibacterial activity (measured in
mm)		

,	Concentrations mg/ml	Bacterial strain					
Cassia species		Methanolic extract			Ethanolic extract		
		S. aureus,	E.coli	K. pneumoniae	S. aureus,	E.coli	K. pneumoniae
1-C.fistula	Control	0	0	0	0	0	0
	400	20	26	23	22	25	24
	200	14	19	16	17	21	19
	100	0	14	11	12	16	15
2-C.bakeriana	400	20	25	24	22	28	24
	200	13	18	17	18	21	19
	100	11	13	14	13	17	16
3-C.gluaca	400	21	27	24	21	22	23
	200	14	18	17	16	17	18
	100	11	14	13	12	14	13
4-C.siamea	400	18	30	28	22	23	20
	200	17	22	19	17	18	15
	100	12	15	14	13	14	12
5-C.alata	400	22	26	25	25	24	22
	200	18	20	17	18	19	17
	100	13	15	14	12	13	0
L.S.D. 0.05 interaction		0.218					

Results in table (2) show that both methanolic and ethanolic extract of examined Cassia species possess antibacterial activity against examined bacterial strains especially with increasing concentration compared to control (DMSO) treatment with exception of C.fistula methanolic extract at concentration of 100mg/ml against S. aureus and C.alata ethanolic extract at concentration of 100mg/ml against K. pneumonia ,both failed to give any antibacterial activity . C.siamea methanolic extract at concentration of 400mg/ml gave highest antibacterial activity against E.coli (30mm)

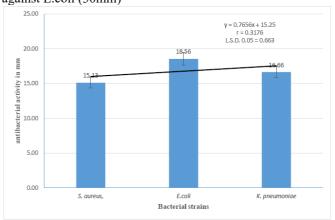


Figure (3) effect of bacterial strain (S. aureus, E.coli and K. pneumonia) in antibacterial activity (measured in mm)
Results in figure (3) indicate that E.coli gave highest growth inhibition zone (18.56 mm) compared to S. aureus (15.13mm) and K. pneumoniae (16.66mm)

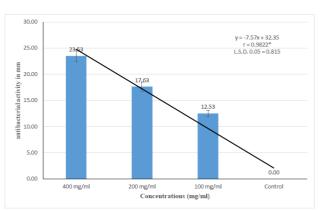


Figure (4) effect of plant extract concentration (100mg/ml, 200mg/ml, 400mg/ml) in addition to control treatment (DMSO) on antibacterial activity (measured in mm)

Results in figure (4) showed that concentration 400mg/ml gave highest growth inhibition zone (23.53mm) compared to concentration 200mg/ml (17.63 mm) and concentration 100mg/ml which gave (12.53mm)

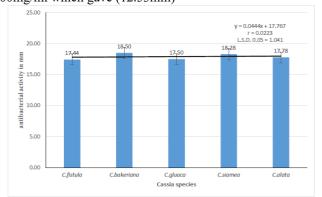


Figure (5) effect of cassia species (-C.fistula, 2-C.bakeriana, 3-C.gluaca, 4-C.siamea 5-C.alata) on antibacterial activity (measured in mm)

Figure (5) indicate that slight variation was observed among Cassia in their antibact C.erial values, C.fistula gave lowest value but it does not significantly differ with C.gluaca and C.alata while both C.bakeriana and C.siamea gave highest value but they does not differ between them

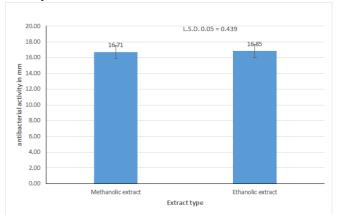


Figure (6) effect of plant extract type (methanol or ethanol) on antibacterial activity (measured in mm)

antibacterial activity

Figures 7-16 show how plant extract with increase concentration using (DMSO) increase in their bacterial growth inhibition by increase growth inhibition zone.

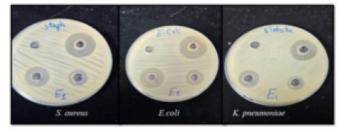


Figure (7) Ethanolic seed extract of C.fistula against S. aureus, E.coli and K. pneumoniae at three concentration 1-400mg/ml, 2-200mg/ml ,3- 100mg/ml in addition to control treatment (c) using (DMSO)

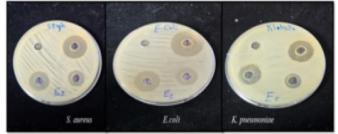


Figure (8) Ethanolic seed extract of C.bakeriana against S. aureus, E.coli and K. pneumoniae at three concentration 1-400mg/ml, 2-200mg/ml ,3-100mg/ml in addition to control treatment (c) using (DMSO)

Figure (9) Ethanolic seed extract of C.gluaca against S. aureus, E.coli and K. pneumoniae at three concentration 1-400mg/ml, 2-200mg/ml ,3- 100mg/ml in addition to control treatment (c) using (DMSO)

Figure (6) showed that there was no significant differences Figure (10) Ethanolic seed extract of C. siamea against S. aureus, between methanol and ethanol solvent in their effect on E.coli and K. pneumoniae at three concentration 1-400mg/ml, 2-200mg/ml, 3- 100mg/ml in addition to control treatment (c)

Figure (11) Ethanolic seed extract of C.alata against S. aureus, E.coli and K. pneumoniae at three concentration 1-400mg/ml, 2-200mg/ml, 3- 100mg/ml in addition to control treatment (c) using (DMSO)

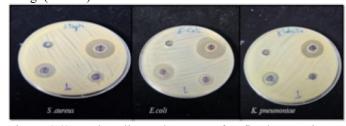


Figure (12) Methanolic seed extract of C.fistula aureus, E.coli and K. pneumoniae at three concentration 1-400mg/ml, 2-200mg/ml, 3-100mg/ml in addition to control treatment (c) using (DMSO)

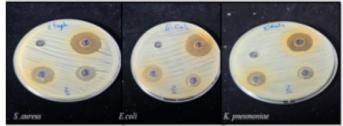


Figure (13) methanolic seed extract of C.bakeriana against S. aureus, E.coli and K. pneumoniae at three concentration 1-

treatment (c) using (DMSO)

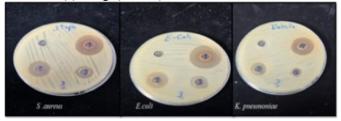


Figure (14) Methanolic seed extract of C.gluaca against S. aureus, E.coli and K. pneumoniae at three concentration 1-400mg/ml, 2-200mg/ml, 3-100mg/ml in addition to control treatment (c) using (DMSO)



Figure (15) Methanolic seed extract of C.siamea against S. aureus, E.coli and K. pneumoniae at three concentration 1-400mg/ml, 2-200mg/ml, 3-100mg/ml in addition to control treatment (c) using (DMSO)

Figure (16) Methanolic seed extract of C.alata against S. aureus, E.coli and K. pneumoniae at three concentration 1- 3. 400mg/ml, 2-200mg/ml, 3-100mg/ml in addition to control Lakhssassi, N. (2019). A comprehensive review on medicinal treatment (c) using (DMSO)

Discussion

virulence of both gram positive and gram negative bacteria An ethnomedicinal plant. J Adv Pharm Technol Res. (Thakur et al.,2016). Bacteria used efflux pumps as a 2011;2(2):104-9 mechanism to develop resistance to antibiotics so interfering 5. with the functions of these efflux pumps would be an interesting Petit, T. and Dufosse, L., Natural hydroxyanthraquinoid therapy to control infectious diseases, besides inhibiting the pigments as potent food-grade colorants: an overview. Natural function of efflux pumps, various plant extracts affect the Products and Bioprospecting. J. Nat. Prod. 2012; 2(5), pp.174virulence factors of bacteria with altering the quorum sensing 93. (QS) gene expression (Holler et al.,2012).

In addition, various plant extracts have immunomodulatory Chemotherapy. 2003;51(2):241-6. effects. Since the plant extracts consist of complex mixture of 7. phytochemical constituents, emergence of microbial resistance Approach. Mirpublishers. Moscow. to the complex mixture of compounds may be much slower than δ . those of antibiotics (Upadhyaya et al.,2013).

in different types of solvents depending on their polarity. In a infections. Afr. J. Biotechnol. 6(11): 1272-1275 traditional setting water is largely solvent used to prepare these 9. concoctions (Elmahmood and Amey, 2007).

phytochemicals like alkaloids, flavonoids, tannins and saponins Iran. Jundis-hapur J Microbiol.;3(3):107-113 can dissolve well in methanol (Kavimani et al., 2015).

400mg/ml, 2-200mg/ml ,3-100mg/ml in addition to control Phytochemical constituents such as alkaloids, flavonoids, tannins, phenols, saponins, and several other aromatic compounds are secondary metabolites of plants that serve a defence mechanism against invasion by many microorganisms, insects and other herbivores. Flavonoids are hydroxylated phenolic substance known to be synthesized by plants in response to microbial infection. Antimicrobial property of saponin is due to its ability to cause leakage of proteins and certain enzymes from the cell. Tannins bind to proline rich proteins and interfere with the protein synthesis.(Murugan et al.,2013).

> The reason for the dissimilar sensitivity between gram positive and gram negative bacteria could be attributed to the morphological differences in the cell wall between these microorganisms. Gram negative bacteria have an outer the phospholipid membrane carrying structural lipopolysaccharide components. This makes the cell wall impermeable to lipophilic solutes, while porins constitute a selective barrier to the hydrophilic solutes (Gupta et al., 2009)

Conclusion

Both ethanol and methanol are an excellent solvent n plant phytochemical extraction. Cassia species possess antibacterial activity increased with increasing plant extract concentration.

References

- Alam, G and Mishra, A.K. (2017). Traditional and Modern Approaches for Standardization of Herbal Drugs: A Review. Acta Biomedica Scientia. 2348:2168.
- Al-mohammedi, A. N.; Al-mehemdi, A. F. and Almehemd, O. H.(2016). Some physical properties of essential oil of baraka seed Nigella sativa impacted by bat guano otonycteris hemprichii camd andseaweed extract, The Iraqi Journal of Agricultural Sciences, 74(4):1124-1131
- Anand, U; Jacobo-Herrera, N: Altemimi, plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites. 2019;9(11):258.
- Bhalodia, N.R and Shukla, V.(2011)J. Antibacterial Inhibitory concentrations of various plant extracts affect the and antifungal activities from leaf extracts of Cassia fistula l.:
 - Caro, Y., Anamale, L., Fouillaud, M., Laurent, P.,
 - controlled clinical trials. Journal of Antimicrobial
 - Egorove, N. S. (1985). Antibiotics Scientific
- Elmahmood, A.M. and Amey, J.M. (2007). In vitro antibacterial activity of Parkia biglobosa (Jacq) root bark Different phyto-constituents have different degrees of solubility extract against some microorganisms associated with urinary
- Golamreza, I. and J.M.Ali. (2011). Frequency of extend- ed-spectrum beta lactamase positive and multidrug Methanol was reported AS an excellent solvent since resistance pattern in Gram-negative urinary isolates, Semnan,

- 10. Gupta, P.A., Batra, R., Chauhan, A., Goyal, P., Kaushik, P.(2009). Antibacterial activity and TLC bioautography of Ocimum basilicum L. against pathogenic bacteria. J. Pharm. Res., 2: 407 409.
- 11. Hafeza ,S. A.;S. M. Osmana;H. A. Ibrahimb; A.A. Seadac; N. A. Ayoub*d,e.(2019). Chemical Constituents and Biological Activities of Cassia Genus: Review, Archives of Pharmaceutical Sciences Ain Shams University,3(2):195-227
- 12. Holler, J.G.; Christensen, S.B.; Slotved, H.; Rasmussen, H.B.; GuzMan, A.; Oslen, C.E.; Petersen, B. and Mølgaard, P. (2012). Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. J of Antimicrob Chemother, 67: 1138-1144.
- 13. Josiphine, A.M.; Helen, K.M. and Paul, A.G. (2006). Laboratory manual and workbook in Microbiology .8th, p. 98. 14. Karen, W and Martin, E.E. (2003). Herbal medicines for treatment of bacterial infections: a review of
- 15. Kavimani,V; Ramadevi,A.; Kannan,K.; Gnanavel,S and Sivaperumal, G.(2015). Antibacterial activity of Cassia auriculata Linn. Journal of Chemical and Pharmaceutical Research, 7(9):479-485
- 16. Livermore, D. (2004). Can better prescribing turn the tide of resistance? Nat Rev Microbiol; 2:73–8.
- 17. Murugan, T.; Wins, J. A. and Murugan, M. (2013). Antimicrobial Activity and Phytochemical Constituents of Leaf Extracts of Cassia auriculata, Indian J Pharm Sci 2013;75(1):122-125
- 18. Sabtu, N.; Enoch, D. A. and Brown, N. M.(2016). Antibiotic resistance: what, why, where, when and how?, British Medical Bulletin, 116:105–113.

- 19. Seyyednejad ,S.M. ;H. Motamedi ; M. Vafei ; A. Bakhtiari.(2014). The Antibacterial Activity of Cassia fistula Organic Extracts, jundishapur J Microbiol. 2014 January; 7(1): e8921.
- 20. Soltan, D.M. M;T.Mahnaz;G.Latif; M.Shabnam; S. Maryam;B.Rounak.(2007). Characterization of antibiotic resistant patterns of Salmonella serotypes isolated from beef and chicken samples in Tehran. Jundishapur J Microbiol. 2(4):124–131.
- 21. Thakur, P.; Chawla, R.; Narula, A.; Goel, R.; Arora, R. and Sharma, R.K. (2016). Anti-hemolytic, hemagglutination inhibition and bacterial membrane disruptive properties of selected herbal extracts attenuate virulence of Carbapenem Resistant Escherichia coli. Microb Pathogen 95: 133-141.
- 22. Upadhyaya, I.; Upadhyay, A.; Kollanoor-Johny, A.; Darre, M.J. and Venkitanarayanan, K. (2013). Effect of plant derived antimicrobials on Salmonella enteritidis adhesion to and invasion of primary chicken oviduct epithelial cells in vitro and virulence gene expression. Inter J of molecu scien, 14: 10608–10625.
- 23. WHO. WHO global report on traditional and complementary medicine 2019: World Health organization; 2019.
- 24. WHO. WHO traditional medicine strategy 2002–2005. Geneva: World Health Organization; 2002.2017
- 25. Zibaee, E;B. Javadi;Z. Sobhani; M. Akaberi; F.Farhadi; M. S. Amirid; H.Baharara; A.Sahebkar;S.A. Emami. (2023). Cassia species: A review of traditional uses, phytochemistry and pharmacology, Pharmacological Research Modern Chinese Medicine 9 (2023) 100325