USING OF AUTOLOGOUS PLATELET RICH PLASMA IN HUMAN SEMINAL FLUID CRYOPRESERVATION TECHNIQUE

Nihal A. Kamal¹, Ula Al-Kawaz², Rana R Al. Saadi³

¹Applied Embryology. High Institute of Infertility Diagnosis and ART, Al-Nahrain University, Iraq, nihal.amir@ierit.nahrainuniv.edu.iq

²M.B.Ch. B, F.I.B.M.S, F.E.B.U. /High Institute of Infertility Diagnosis and ART, Al-Nahrain University, Iraq,ulamhm@gmail.com

³B.V.M, M.Sc. Applied Embryology. / High Institute of Infertility Diagnosis and ART, Al-Nahrain University, Iraq, drranaa2018@gmail.com

Abstract

Background: cryopreservation of semen is a technique that used to preserve sperm cells at low temperature, in liquid nitrogen at -196C. Autologous-PRP therapy is using in assisted reproductive technologies due to its well-known regenerative properties.

Objective: to investigate the effect of using autologous-PRP as a cryoprotective media on human spermato-zoa. Materials and methods: 60 semen sample from normozoospermic male with their autologous-PRP prepared from their blood were collected at the same time of semen collection. All semen samples were tested macro and microscopically according to WHO (2010). Each sample divided into three groups (Control sample preserved with only cryomedia 0.7ml, Autologous-PRP sample 0.5ml, and mixed sample 0.5ml PRP + 0.7ml Cryomedia). Then preserve them into liquid nitrogen -196C for two months. After that, thawing in water bath 37C. then se-men parameters were evaluated and the results were compared.

Results: samples that preserved with cryomedia only, showed significantly lower concentration, total count (p<0.001) and progressively motile sperms percent (p=0.010). Also, there was significantly rise non-progressively motile sperms percent (p=0.007), insignificantly rise immotile sperms percent (p=0.207).

While samples that preserved with 0.5ml autologous-PRP alone proved there were significantly decrease concentration, total count and progressively motile sperms percent (p< 0.001) Moreover, there were significantly increase non-progressively motile and immotile sperms percent (p< 0.001).

Conversely, mixed autologous-PRP 0.5 ml with cryomedia 0.7 ml reveal better results. There was significant decrease concentration, total count (p<0.001), but there was no significant decrease percentage of progressively motile (p=0.208) or non-progressively motile sperm (p=0.768), and insignificant increase percentage of immotile sperm (p=0.157).

Conclusion: Autologous-PRP 0.5ml with cryomedia has better low significant effect on sperm parameters when used for semen cryopreservation and act as a co-factor.

Keywords: Cryopreservation; Cryoprotectant agent; Autologous-PRP.

Introduction

Cryopreservation of semen includes the freezing of sperm cells at extremely low temperatures, in most cases around -196 C using liquid nitrogen. This process is essential for preserving the viability of sperm for prolonged periods, ensuring their availability for various reproductive applications (11). There are several indications for using semen cryopreservation technique, such as assisted reproductive technologies in case of (IVF) in vitro fertilization or (ICSI) intra cytoplasmic sperm injection (3). Also, before vasectomy or sterilization (15). The process involves three types which are slow freezing; rapid freezing or vitrification, each one needs carefully con-trolled freezing and storage in liquid nitrogen to maintain sperm viability, by optimization of cryopreservation protocols, cryoprotectant concentration and freezing rates (13):(4). There are two types of cryoprotectant agent as penetrating which include glycerol and dimethyl sulfoxide (DMSO) (2) and the

second type is non penetrating which include sugars and polyvinylpyrrolidone (PVP) (5).

platelet-rich plasma (PRP) is a component of blood containing a greater concentration of platelets than what is typically found in circulating blood. Platelets are pivotal for clotting and wound healing, and PRP is thought to encourage tissue repair and regeneration due to release various growth factors and cytokines, including platelet derived growth factor (PDGF), transforming growth factor beta (TGF-B), and vascular endothelial growth factor (VEGF) (8). PRP has been used in numerous medical fields, including orthopedics, dermatology, and dentistry, due to its regenerative properties (10). hrough the activation of several signaling pathways, including the recruitment of mesenchymal stem cells (MSCs). These cells possess multi potent differentiation capabilities and can contribute to tissue repair and regeneration (7). PRP has obtained attention for its important applications in reproductive medicine in vitro fertilization (IVF) due to the influence of PRP

on sperm parameters and fertility outcomes (9). PRP has gained notice as a pivotal cryoprotective agent due to its rich content of growth factors, proteins, and cytokines that could support cell survival during cryopreservation. However, the cytotoxic effects of PRP, especially when used in high concentrations, need to be carefully evaluated (6).

Materials and method:

The study was included 60 fertile men at the High Institute for Infertility Diagnosis and Assisted Reproductive Technologies /Al- Nahrain University, Harthiya International Laboratory from September 2023 until November 2023. This study had been approved by Local Ethical Committee in the High Institute. Detailed questionnaire was designed depending on history and physical examination. Particularly, cases were assorted according to certain inclusion and exclusion criteria. The inclusion criteria in this experiment were with normozoospermic criteria applied by WHO, 2010 in the 5th edition of the manual of seminal fluid analysis, and the age were ranged from 25 - 40 years old. Any other male patients with abnormal semen parameters or out of the age range were excluded.

The blood sample 10 ml from the same patient at the same time of semen collection, were collected for preparation of Autologous platelet rich plasma (PRP).

Preparation of Autologous PRP: The procedure was done as the following steps in In Vitro Fertilization (IVF) laboratory under sterile conditions:

- 1- Blood was sampled with 10ml drawn into PRP Tube with ACD (Anticoagulant citrate dextrose) + RA (Reju-venation Agent) + ACTIVATOR.
- 2- Centrifugation, PRP tube was placed in the centrifuge, spinning the blood at 3000 rpm for 10 minutes allowing the separation of red blood cells, platelet-poor plasma, and PRP.
- 3- $10~\mu L$ of the separation placed on the slide for platelet examination under light microscope.
- 4- Separation of PRP, carefully extracted and poured into falcon tube for further use.

Seminal Analysis: according to WHO (2010), Semen sample was collected after 2–7 days of sexual abstinence these semen samples were collected in a private room near the laboratory by masturbating into a clean, wide-mouth sterile container. The samples were then liquefied in an incubator (37°C) for 15-30

minutes. After complete liquefaction, the viscosity of the sample can be estimated by gently aspirating it into a wide-bore plastic, maximum 2 cm. A normal of semen sample has homogeneous, grey-opalescent appearance. The pH should be measured. A drop of semen is spread evenly onto the pH paper. After 3 seconds. The normal pH of the semen when the semen is slightly alkaline, is between 7.2 and 8. After, the macroscopic examination were done. The microscopic investigation of the sample, estimates are included the concentration, count and motility.

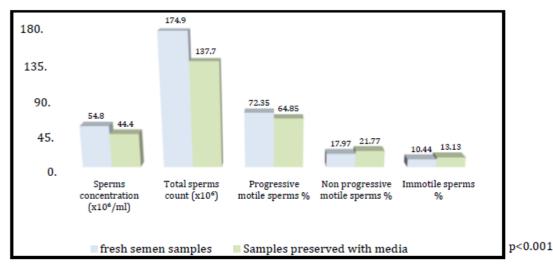
Each semen sample divided into three groups (Control sample with only cryomedia 0.7 ml (glycerol and sugar), Autologous PRP sample 0.5 ml, and mixed sample 0.5ml PRP+Cryomedia 0.7 ml (glycerol and sugar). Then preserve these three groups into liquid nitrogen -196 for two months. After that, thawing in water bath at 37 C. then semen parameters were evaluated and the results of the three groups were compared.

Statistical analysis:

The data were analyzed using Statistical Package for Social Sciences (SPSS) version 23.0 and Microsoft office 2010. The descriptive statistics including frequency, range, mean and standard error were measured to de-scribe the data. The groups were compared by applying paired sample t-test and analysis of variance. Post hoc tukey test of ANOVA were used to assess paired samples significance and the results were considered statistically significant when p value was equal to or less than 0.05.

Results

Comparison of seminal analysis parameters between fresh semen samples and samples preserved with media


The comparison between fresh semen samples and sample preserved with media were presented in table 1 and figure 1, accordingly the semen sample preserved with media revealed significantly decrease sperms con-centration (44.40 \pm 2.08 vs. 54.80 \pm 2.27; p<0.001), total sperms count (137.78 \pm 8.92 vs.174.93 \pm 8.79; p<0.001) and progressively motile sperms percent (64.85 \pm 1.91vs.72.35 \pm 2.61; p=0.010).

There was also significantly increase non-progressively motile sperms percent (21.77 \pm 1.39 vs. 17.97 \pm 1.35; p=0.007) and insignificantly increase immotile sperms percent (13.13 \pm 1.25 vs. 10.44 \pm 1.75; p=0.207).

Table 1: Comparison of seminal analysis parameters between fresh semen samples and samples preserved with media

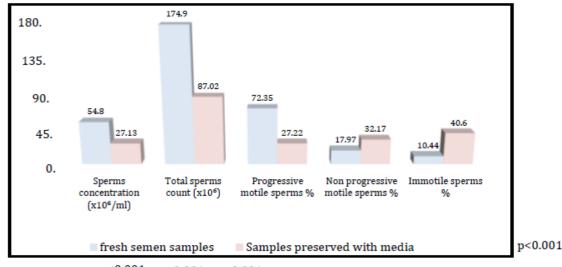
Parameters	Fresh semen Samples	Samples preserved with media	p value
Sperms concentration (10 ⁶ /ml)	54.80 ± 2.27	44.40 ± 2.08	< 0.001 T S
Total sperms count (10 ⁶)	174.93 ± 8.79	137.78 ± 8.92	< 0.001 Ŧ S
Progressive motile sperms %	72.35 ± 2.61	64.85 ± 1.91	0.010 Ŧ S
Non progressive motile sperms %	17.97 ± 1.35	21.77 ± 1.39	0.007 Ŧ S
Immotile sperm %	10.44 ± 1.75	13.13 ± 1.25	0.207 Ŧ NS

T: Paired sample t test; S: Significant ($p \le 0.05$); NS: Not significant (p > 0.05)

p<0.001 p=0.01 p=0.007 p=0.207

Figure 1: Comparison of seminal analysis parameters between fresh semen samples and samples preserved with media

Comparison of seminal analysis parameters between fresh semen samples and samples preserved with 0.5 ml PRP Samples preserved with 0.5 ml PRP also had significantly


decline sperms concentration (27.13 \pm 2.04 vs. 54.80 \pm 2.27; p < 0.001), total sperms count (87.02 \pm 7.36 vs. 174.93 \pm 8.79; p < 0.001) and progressively motile sperms percent (27.22 \pm 2.54 vs.72.35 \pm 2.61; p < 0.001)

On the other hand there were significantly rise non-progressively motile sperms percent (32.17 \pm 3.27 vs. 17.97 \pm 1.35; p < 0.001) and immotile sperms percent (40.60 \pm 3.87 vs. 10.44 \pm 1.75; p < 0.001) as illustrated in table 2 and figure 2

Table 2: Comparison of seminal analysis parameters between fresh semen samples and samples preserved with 0.5 ml PRP

Parameters	Fresh semen	Fresh semen Samples preserved with 0.5 ml PRP	
	Samples		
Sperms concentration (10 ⁶ /ml)	54.80 ± 2.27	27.13 ± 2.04	< 0.001 T S
Total sperms count (10 ⁶)	174.93 ± 8.79	87.02 ± 7.36	< 0.001 T S
Progressive motile sperms %	72.35 ± 2.61	27.22 ± 2.54	< 0.001 T S
Non progressive motile sperms %	17.97 ± 1.35	32.17 ± 3.27	< 0.001 T S
Immotile sperm %	10.44 ± 1.75	40.60 ± 3.87	< 0.001 Ŧ S

T: Paired sample t test; S: Significant ($p \le 0.05$); NS: Not significant (p > 0.05)

 $p{<}0.001 \qquad \qquad p{<}0.001 \qquad p{<}0.001 \quad p{<}0.001$

Figure 2: Comparison of seminal analysis parameters between fresh semen samples and samples preserved with 0.5 ml PRP

Comparison of seminal analysis parameters between samples preserved with media, 0.5 ml PRP and mixed samples (Media & PRP)

Comparison of seminal analysis parameters between samples preserved with media, 0.5 ml PRP and mixed samples (Media & PRP) were demonstrated in table 3 and figure 3, accordingly there were significant differences between the three samples regarding the sperms concentration (44.40 \pm 2.08 vs. 27.13 \pm

2.04vs. 48.73 ± 2.23 ; p < 0.001), total sperms count (137.78 \pm 8.92 vs. 87.02 ± 7.36 vs. 155.47 ± 8.41 ; p < 0.001), progressively motile sperms percent (64.85 \pm 1.91 vs. 27.22 \pm 2.54 vs. 69.75 \pm 2.60; p<0.001), non-progressively motile sperms percent (21.77 \pm 1.39 vs. 32.17 \pm 3.27 vs. 17.57 \pm 1.38; p<0.001) and immotile sperms percent (13.13 ± 1.25 vs. 40.60 \pm 3.87 vs. 12.67 \pm 1.74; p<0.001).

Table 3: Comparison of seminal analysis parameters between fresh semen samples before preservation, preserved with media, 0.5 ml PRP and mixed samples (Media & PRP)

Parameters	Samples	Samples	Samples	Samples	p value
	before	preserved with	preserved with	preserved with	
	preservation	media	0.5 ml PRP	media & PRP	
Sperms concentration (x10 ⁶ /ml)	54.80 ± 2.27	44.40 ± 2.08	27.13 ± 2.04	48.73 ± 2.23	< 0.001 ∀ S
Total sperms count (x10 ⁶)	174.93 ± 8.79	137.78 ± 8.92	87.02 ± 7.36	155.47 ± 8.41	< 0.001 ∀ S
Progressive motile sperms %	72.35 ± 2.61	64.85 ± 1.91	27.22 ± 2.54	69.75 ± 2.60	< 0.001 ∀ S
Non progressive motile sperms %	17.97 ± 1.35	21.77 ± 1.39	32.17 ± 3.27	17.57 ± 1.38	< 0.001 ∀ S
Immotile sperm %	10.44 ± 1.75	13.13 ± 1.25	40.60 ± 3.87	12.67 ± 1.74	< 0.001 ∀ S

V: ANOVA; S: Significant ($p \le 0.05$); NS: Not significant (p > 0.05)

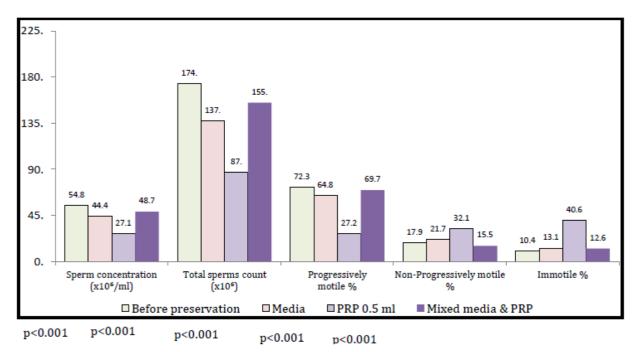


Figure 3: Comparison of seminal analysis parameters between fresh semen samples before preservation, preserved with media, 0.5 ml PRP and mixed samples (Media & PRP)

Discussion:

In the present study the results in table (1) revealed there were noticeable differences in various semen parameters. The findings suggest that semen preservation with media has a significant influence on sperm concentration, total sperm count, semen samples indicate potential harmful effects of the preservation media on sperm viability and functionality. This quality (14).

On the other hand, the results of utilizing of 0.5 ml Autologous PRP as a cryoprotective medium alone showed significant alterations in sperm parameters in table (2), indicating potential consequences for sperm quality and fertility outcomes. The findings illustrate a considerable decline in sperm concentration, total sperm count, and percentage of progressively motile sperm and sperm motility. the significantly lower sperm concentration may be due to various cytotoxic and oxidative stress inducing and total sperm count in preserved samples compared to fresh factors found in PRP composition and its interaction with sperm cells. Several studies have concentrated on the detrimental effects of PRP on sperm quality and functionality, One study observation aligns with previous studies indicating that certain conducted by (1) inspected the effects of PRP on sperm media components or preservation techniques may affect sperm parameters and investigated a significant lowering in sperm motility and viability after exposure to PRP. The cytotoxic effects of PRP components, involving leukocytes and cytokines,

a result of that leading to the reduction in semen parameters. Springer; 2020. p. 27-45. However, the results in table (3) emphasized the preserving of 5. semen samples in a combination of cryoprotective media Characteristics of Mammalian Oocytes and Embryos. Biol (glycerol and sugar) 0.7 ml with Autologous PRP 0.5 ml obtain Reprod. 2009;81(1):135-46. best results on semen parameter than using cryoprotective media 6. or Autologous PRP alone, as proved by the study of (1) the Martelli A, Muttini A. Platelet-Rich Plasma: A Regen-erative synergistic effects of glycerol, sugar, and PRP in cryoprotective Strategy for Cryopreserved Ovarian Tissue? Antioxidants. media for semen preservation. showed improved sperm 2019;8(9):394. parameters and reproductive tract cytokine profiles after using 7. the combination of cryoprotective media mixed with PRP. In Sampson S. A call for a standard classification sys-tem for addition, the combination of glycerol, sugar, and PRP has been future biologic research: The rationale for new PRP shown to increase post thaw sperm viability, motility, and DNA nomenclature. PM R. 2015;7(4 Suppl):S53-S9. integrity, compared to conventional cryoprotective media 8. formulations (12).

Conclusion:

parameters, these conclusions were made, the addition of adjuvant platelet-rich plasma on clinical outcomes of cryopreservation media only (glycerol and sugar) 0.7 ml to the intrauterine insemination cycles: a ran-domized clinical trial. semen shows low positive results, while the addition of J Assist Reprod Genet. 2016;33(1):97-103. Autologous PRP 0.5 ml as a cryoprotective agent shows 10. negative results. On the other hand, the adding both of media new proposal for the application of platelet-rich fi-brin: a case (glycerol and sugar) 0.7 ml with Autologous PRP 0.5 ml reveal report. Int J Periodontics Restorative Dent. 2016;36(3):337better results of semen parameters than cryomedia alone.

References

- Akingbemi BT, Adesiyan AC, Orish VN, Oyeyipo IP, Akang EN, Akinloye O, et al. Impact of platelet-rich plasma on sperm parameters and reproductive tract cytokine profiles following exposure to 2-bromopropane in rats. Andrologia. 2017;49(6):e12705.
- Budiyanto A, Abdullah MS, Inggriani C. Dimethyl sulfoxide (DMSO) as a Cryoprotectant for Chicken Se-men: A Review. IOP Conf Ser Earth Environ Sci. 2018;130(1):012016.
- Esteves SC, Miyaoka R, Agarwal A. An update on the clinical assessment of the infertile male. World J Men's Health. 2015;33(1):1-20.
- Jones C, Kaya A, Hu J, Aitken RJ, Nixon B. Optimization of cryopreservation protocols for spermatozoa.

- were found to compromise sperm integrity and functionality, as In: Cryopreservation and Freeze-Drying Protocols. New York:
 - Leibo SP. Osmotic and Cryoprotectant Permeability
 - Mauro A, Russo V, Di Marcantonio L, Berardinelli P,
 - Mautner K, Malanga GA, Smith J, Shiple B, Ibrahim V,
 - Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med. 2019. Available from: doi:10.1007/s40279-018-1036-1.
- Nadjarzadeh A, Dehghani Firouzabadi R, Vaziri N, In summary, due to the results of this study on the semen Daneshbodi H, Lotfi MH, Mozafari Kermani R. The impact of
 - Nagata MJ, Messora MR, Furlaneto FA, Fucini SE. A 45.
 - 11. Purdy PH. A review on goat sperm cryopreservation. Small Rumin Res. 2006;63(3):215-25.
 - Sharma RK, Agarwal A, Esteves SC, Majzoub A. Role of oxidative stress and inflammation in male and female infertility: an overview. In: Infertility. Springer; 2019. p. 79-93.
 - Smith AB, Stacey GN, Reddi PP. Principles of cryopreservation applied to reproductive cells. In: Principles of Regenerative Medicine. 3rd ed. Academic Press; 2019. p. 1083-1100.
 - Wong WY, Thomas CM, Merkus JM, Zielhuis GA, Steegers-Theunissen RP. Male factor subfertility: possi-ble causes and the impact of nutritional factors. Fertil Steril. 2019;73(3):435-42.
 - World Health Organization. Vasectomy: A technical and policy review. Contraception. 2012;85(5):432-44..