# THE ROLE OF FUNGAL INFECTIONS IN THE PATHOGENESIS OF DIALYSIS-DEPENDENT AND NON-DIALYSIS-DEPENDENT PATIENTS WITH KIDNEY DISEASE

## Sundus Saleh Mahdi <sup>1</sup>, Thamer A.A. Muhsen<sup>2</sup>

1-2 Dept of Biology, college of Education for pure Science (Ibn Al-Haitham), University of Baghdad, Iraq

Corresponding author email: Sondos.Saleh2102p@ihcoedu.uobaghdad.edu.iq

thamer.a.m@ihcoedu.uobaghdad.edu.iq

### **Abstract**

The results of isolation, morphological and microscopic diagnosis, Chromic Agar, Vitik technology and Bact Alert showed that the diagnosis of fungi isolated from blood samples of end-stage renal patients who did not undergo dialysis and those who underwent dialysis was 60 samples for each type. The total number of fungal isolates isolated from people who did not undergo dialysis was 26 pathogenic fungal isolates, with a percentage frequency of 43.33%. In this study, 4 genera of pathogenic fungi were identified: *Candida* spp, *Rhodotorula* spp, *Cryptococcus* spp. and *Aspergillus* spp. The number of Candida isolates reached 13 isolates, with a frequency of 50%.

The results also showed that the diagnosed species from the genus Rhodotorula was R. mucilaginosa, with a frequency of 19.23%, while the diagnosed species from the genus Cryptococcus was C. neoformans, with a frequency of 7.69%. The results also show that the identified species of the genus Aspergillus is A. flavus, with an incidence of 23.07%. As for the results of isolation and diagnosis of samples subjected to dialysis, the total number of fungal isolates isolated from patient samples reached 35 pathogenic fungal isolates with a percentage incidence of 58.33%, and the number of Candida isolates reached 23 pathogenic isolates with a percentage incidence of 65.71%.

**Key word:** kidney failure, kidney disease, fungi infection.

### **Introductions:**

One of the most crucial components of the urinary system is the kidneys. The kidneys are situated on either side of the spine, towards the rear of the abdomen., and are surrounded by two layers of fat. Each kidney is connected to the kidney pelvis by the renal artery and the renal vein ((Mader, 2008) Sherwood & Ward, 2019; Hamid et al., 2021 ). Chronic renal failure (CRF) is characterized by progressive destruction of renal mass with irreversible sclerosis) and an increase in interleukin 6 (Wahid et al, 2006; AL-Qadhi& AL-Saadi, 2022 ;Hasan et al.,2021End-stage kidney disease is one of the most well-known worldwide health issues. For those with this illness, dialysis is a vital therapy (Abdul-Jabbar and Kadhim, 2022). and kidney failure impairs cellular motility and immunoglobulins (Saleh, and Albayati, 2017; Al-Naqqash et al., 2021). Inflammation increases

interleukin 6 and other immunoglobulins (Sahib and AlShaikely, 2008 ; Ridha& Kadri,2018.; Abed and Mahmood, 2023).

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease that leads to end-stage kidney failure. It is the reason for dialysis in 7 to 10 percent of patients (Altaie et al, 2022). Chronic kidney disease (CKD) is described as kidney dysfunction, i.e. a slow loss of kidney function over time. When the kidneys stop functioning, the patient requires dialysis or a kidney transplant (Balaky et al, 2023). Diabetic nephropathy (DN) is the main cause of microangiopathy and the main cause of disease that occurs at this stage in patients with type 2 diabetes (Hamid et al, 2021). Fungi account for about 7% of all eukaryotic organisms found on earth (Jaloud & Hassan 2009; Mora et al, 2011) and hospitals are full of

O&G Forum 2024; 34 - 3s: 1967-1975

pathogenic fungi (Mohammed and AL-Jibouri, 2015; Jasem et al. 2017).

Fungal infections are one of the health problems that accompany patients with chronic kidney disease, especially those who suffer from a weak immune system. Aspergillosis, cryptococcosis and candidiasis are considered the most dangerous fungal species for immunocompromised patients (Rayens et al., 2021), and Candida species play an important role in invasive fungal infections (Alsaedi and Al-Hashimy, 2022; Lee et al, 2021) Invasive opportunistic fungal infections are an important risk factor and a source of high rates of kidney disease and increased mortality despite medical and therapeutic intervention (Bongomin et al, 2017). Advances in medicine and the treatments used to save patients' lives have also led to a weakening of the immune system, increasing the number of patients exposed to fungal infection (Liebana-Jordan et al, 2021).

### Material and methods

At Al-Imam Al-Kadhimin (peace be upon him) Teaching Hospital in Baghdad, 120 Iraqi patients gave clinical blood samples. They were categorised as having end-stage renal disease and divided into two groups: sixty patients receiving dialysis (twenty-three males and thirty-seven females) and sixty patients not receiving dialysis (twenty-five males). 35 of them were between 6 and 80 years old.

# Method of clinical sampling

Additional blood was taken from double-lumen or arteriovenous fistulas in patients who came to the hospital for dialysis in the morning as part of the regular monthly examination. This was done after disinfecting the area with a medical syringe sprayed with a 70% ethanol and 15% iodine solution and before starting dialysis. Each participant and patient (male and female) had 8 milliliters of blood drawn. Each blood sample was then divided into two separate tubes. 4 ml of the sample was added to each gel tube and the tubes were centrifuged at 3000 rpm for 20 minutes. The samples were then placed in the refrigerator.

# 1- Isolation and diagnosis of fungi and preparation of culture media

All culture media used were prepared according to the manufacturer's instructions. Fungi were grown on PDA and SDA culture media and incubated at 25°C for seven days and diagnosed morphologically and microscopically according to the taxonomic keys (De Hooge et al., 2005; Deorukhkar and Saini, 2014).

### 2- Fungal diagnosis with chromogenic agar

The yeast Candida was detected in a chromogenic agar medium using the approach of Hemaid et al. (2021). Vitec2 Compact was also used for the diagnosis of yeasts.

### 3- Diagnosis of fungi by Bact alert

The fungi were diagnosed in this way according to (Kim et al., (2015), whereby 4 ml of blood was injected directly into the culture medium (Bact alert bottles) and these bottles were then placed in a device.Bact / Alert 3D Microbid identification system / biomerieux for five days at a temperature of 27°C, after which a secondary culture was established on the medium Sabouraub Dextrose Agar (SDA) for four weeks at 37°C.

### 4- Statistical Analyses:

The Statistical Analysis System tool was used in this study to determine how the variance factors affect the research parameters. In the current work, we used the chi-square test to compare the percentages significantly and we found significant differences at  $P \le 0.001$ .

### **Results**

The results of isolation, morphological and microscopic diagnosis showed the diagnosis of fungi isolated from blood samples of patients with end-stage renal disease and patients not undergoing dialysis, which amounted to 60 patient samples. The total number of fungal isolates isolated from patient samples reached 26 pathogenic fungal isolates, with the percentage of occurrence being 43.33% and diagnosed. In this study, 4 genera of pathogenic fungi were analysed: Candida spp., Rhodotorula spp., Cryptococcus spp. and Aspergillus spp. The number of Candida isolates reached 13 isolates, which were distributed among the following species: C. albicans ranked first with 6 isolates and a frequency of 23.07%. In second place was C. glabrata with 4 isolates and an incidence of 10.38%, while the number of isolates of C. parapsilosis. 3 isolates, with a frequency of 11.53%, as shown in Table (1).

Table (1): shows the types of fungi isolated from the blood of end-stage renal patients not undergoing dialysis, the number of isolates and the percentage of fungal frequencies.

| not infected<br>with fungi | Types of fungi  | Number of isolates | Frequency<br>percentage | Chi (x2) | P value |
|----------------------------|-----------------|--------------------|-------------------------|----------|---------|
|                            | No              | 1                  | /                       | 1        | 1       |
| infected with              | C. albicans.    | 6                  | 23.07%                  |          |         |
| fungi                      | C.glabrata      | 4                  | %15.38                  |          | <0.0001 |
|                            | C. parapsilosis | 3                  | 11.53%                  | 38.16    |         |
|                            | R. mucilaginosa | 5                  | 19.23%                  | 38.10    |         |
|                            | C. neoformans   | 2                  | 7.69%                   |          |         |
|                            | A. flavus       | 6                  | 23.07%                  |          |         |
| Total number of isolates   |                 | 26                 | 43.33%                  |          | _       |

The results of isolation, morphological and microscopic diagnosis showed the diagnosis of fungi isolated from blood samples of end-stage renal patients undergoing dialysis, which amounted to 60 patient samples. The total number of fungal isolates isolated from patient samples reached 35 pathogenic fungal isolates with a percentage of 58.33% diagnosed. The study included 4 genera of pathogenic fungi: *Candida* spp., *Rhodotorula* spp., *Cryptococcus* spp. and *Aspergillus* spp.

The number of Candida isolates reached 23 pathogenic isolates, distributed among the following species: C. albicans ranked first with 10 isolates and an incidence of 28.57% and C. glabrata ranked second with 8 isolates and an incidence of 22.85%, while the number of C. tropicallis type isolates was 3 isolates with an incidence of 8.57% and the number of C. parapsilosis type isolates was 2 with an incidence of 5.71%. As shown in Table (2).

Table (2): Shows the types of fungi isolated from the blood of end-stage renal patients undergoing dialysis, the number of isolates and the percentage of fungal frequencies.

| not infected<br>with fungi | Types of fungi           | Number of isolates | Frequency<br>percentage | Chi (x2) | P value |
|----------------------------|--------------------------|--------------------|-------------------------|----------|---------|
|                            | No                       | 1                  | /                       | 1        | 1       |
|                            | C. albicans.             | 10                 | 28.57%                  |          |         |
|                            | C.glabrata               | 8                  | 22.85%                  |          |         |
| infected with              | C.tropicallis            | 3                  | 8.57%                   |          |         |
| infected with fungi        | C. parapsilosis          | 2                  | 5.71%                   | 42.40    |         |
| Tungi                      | R. mucilaginosa          | 2                  | 5.71%                   | 43.40    | <0.0001 |
|                            | C. neoformans            | 3                  | 8.57%                   |          |         |
|                            | A. flavus                | 7                  | 20%                     |          |         |
| 7                          | Γotal number of isolates | 35                 | 5833.%                  |          |         |

The fungi recovered from 60 blood samples taken from individuals with advanced kidney disease who are not receiving dialysis are also displayed in Table 3. by age group, as all isolates isolated reached 26 isolates, with a rate of 43.33%, as the number of *R. mucilaginosa* yeast isolates isolated reached 5 isolates. The genus *C. neoformans* occurred in 8.33% of samples less than 20

years old, in 3.84% of samples between 31-40 years old, in 7.69% and in 3.84% of samples between 14-50 years old and 17-80 years old. In samples less than 20 years old and in the 61-70 age group, the rate was 3.84% for both. The results also showed the presence of Candida spp. in all age groups except those less than 20 years of age.

Table (3): displays the fungus found in the blood of renal failure patients who are not receiving dialysis according to their age group.

|                            | Age                  | Types of fungi  | Number of isolates | Frequency percentage | Chi (x2) | P value |
|----------------------------|----------------------|-----------------|--------------------|----------------------|----------|---------|
| not infected<br>with fungi | For all ages studied | No              | /                  | 1                    | /        | /       |
|                            | less than 20         | R. mucilaginosa | 1                  | 3.84%                |          |         |
|                            | less than 20         | C. neoformans   | 1                  | 3.84%                |          | <0.0001 |
|                            | 21-30                | C.albicans      | 1                  | 3.84%                |          |         |
|                            | 31-40                | R. mucilaginosa | 2                  | 7.69%                |          |         |
|                            |                      | C.albicans      | 2                  | 7.69%                |          |         |
|                            | 41-50                | R. mucilaginosa | 1                  | 3.84%                | 36.0     |         |
| Patients nfected with      |                      | C.glabrata      | 3                  | 11.53%               |          |         |
| fungi                      | 51-60<br>61-70       | glabrata.C      | 1                  | 3.84%                |          |         |
| Those not                  |                      | A. flavus       | 1                  | 3.84%                |          |         |
| undergoing<br>dialysis     |                      | C. albicans     | 3                  | 11.53%               |          |         |
|                            |                      | A. flavus       | 2                  | 7.69%                |          |         |
|                            |                      | C. neoformans   | 1                  | 3.84%                |          |         |
|                            |                      | A. flavus       | 3                  | 11.53%               |          |         |
|                            | 71-80                | C. parapsilosis | 3                  | 11.53%               |          |         |
|                            |                      | R. mucilaginosa | 1                  | 3.84%                | _        |         |
| Total number               | er of isolates       |                 | 26                 | 43.33%               |          |         |

The fungi isolated from 60 blood samples from dialysis and kidney failure patients are arranged by age group in Table (4). Thirty-five isolates in all, or 58.33%, were

found. As Table (4) demonstrates, the data also demonstrate the prevalence of the genus Candida spp. with 65.71%.

| not infected           | Age                  | Types of fungi  | Number of isolates | Frequency percentage | Chi (x2) | P value |
|------------------------|----------------------|-----------------|--------------------|----------------------|----------|---------|
| with fungi             | For all ages studied | No              | /                  | 1                    | /        | /       |
|                        | lana shan 20         | A. flavus       | 1                  | 2.85%                |          |         |
| Patients               | less than 20         | C. parapsilosis | 2                  | 5.71%                | 32.42    | <0.0001 |
| nfected with           | 21-30                | C.albicans      | 2                  | 5.71%                |          |         |
| fungi                  | 31-40                | C.albicans      | 3                  | 8.57%                |          |         |
| Those not              |                      | C.glabrata      | 2                  | 5.71%                |          |         |
| undergoing<br>dialysis | 41-50                | C.albicans      | 1                  | 2.85%                |          |         |
| alary sis              |                      | C.glabrata      | 1                  | 2.85%                |          |         |
|                        |                      | A. flavus       | 3                  | 8.57%                |          |         |

|             |                          | C. neoformans   | 2  | 5.71%  |  |
|-------------|--------------------------|-----------------|----|--------|--|
|             | 51-60                    | C.albicans      | 3  | 8.57%  |  |
|             |                          | C.glabrata      | 2  | 5.71%  |  |
|             |                          | A. flavus       | 2  | 5.71%  |  |
|             |                          | C. neoformans   | 1  | 2.85%  |  |
|             | 61-70                    | C.albicans.     | 1  | 2.85%  |  |
|             |                          | C.glabrata      | 3  | 8.57%  |  |
|             |                          | R. mucilaginosa | 2  | 5.71%  |  |
|             | 80-71                    | A. flavus       | 1  | 2.85%  |  |
|             | 80-71                    | C.tropicallis   | 3  | 8.57%  |  |
| Total numbe | Total number of isolates |                 | 35 | 58.33% |  |

Table (4): Relationships between the number of isolates, the proportion of fungal frequencies, and the age of patients receiving dialysis who have advanced kidney disease and the fungal species isolated from their blood.

Regarding the results of blood cultures using a BacT/ALERT bottle, 26 positive (+) isolates with a rate of 43.33% and 34 negative (-) isolates with a rate of 56.6% were found in samples from individuals with kidney disease not undergoing dialysis, as shown. The results of the SDA and PDA culture media identified 26

isolates distributed as follows: 13 isolates from the genus *Candida* spp, 5 isolates from the genus *Rhodotorula* spp., 2 isolates from the genus *Cryptococcus* spp. and 6 isolates from the genus *Aspergillus* spp. Figure (1) and Table (5).



Figure (1): Culture of blood samples in a BacT/ALERT glass bottle.

Table (5): Detection and diagnosis of fungi with Bact $\$ Alert and the media SDA and PDA isolated from individual with advanced ( blood) kidney disease not undergoing dialysis.

| Туре | of growing<br>medium | Types of fungi  | Number of isolates | Frequency<br>percentage | Ch(x²) | P value   |
|------|----------------------|-----------------|--------------------|-------------------------|--------|-----------|
|      |                      | Positive(+)     | 26                 | 43.33%                  |        |           |
|      | Bact \Alert          | Negative(-)     | 34                 | 56.66%                  | 0.16   | 0.05* NS  |
|      |                      | Total           | 60                 |                         |        |           |
|      |                      | C.albicans      | 6                  | 23.07%                  |        |           |
| SDA  | PDA                  | C.glabrata      | 4                  | 15.38%                  | 41.36  | <0.0001** |
|      | 15/1                 | C. parapsilosis | 3                  | 11.53%                  |        |           |

| R. mucilaginosa | 5 | 19.23% |  |
|-----------------|---|--------|--|
| C. neoformans   | 2 | 7.69%  |  |
| A. flavus       | 6 | 23.07% |  |

Table (6) also shows the detection and diagnosis of fungi with Bact\Alert and the media SDA and PDA from individual with advanced (blood) kidney disease and dialysis, the number of isolates and the percentage of fungal abundance, as the results of Bact\Alert indicate the presence of 35 isolates. Positive (+) with a rate of 58.33% and 25 isolates were negative (-) with a rate of 41.66%.

The results of SDA and PDA showed that 35 isolates were diagnosed, distributed as follows: 22 isolates belong to the genus Candida spp. 2 isolates belong to the genus *Rhodotorula* spp. and 4 isolates belong to the genus *Candida* spp. *Cryptococcus* spp. and 7 isolates belong to the genus *Aspergillus* spp.

Table (6): Detection and diagnosis of fungi with Bact\Alert and the media SDA and PDA, isolated from individual with advanced (blood) kidney disease undergoing dialysis.

| Туре | of growing<br>medium | Types of fungi  | Number of isolates | Frequency percentage | Ch(x²) | P value   |
|------|----------------------|-----------------|--------------------|----------------------|--------|-----------|
|      |                      | Positive(+)     | 35                 | 58.33%               |        |           |
|      | Bact \Alert          | Negative(-)     | 25                 | 41.66%               | 8.02   | 0.05* NS  |
|      |                      | Total           | 60                 |                      |        |           |
|      |                      | C.albicans      | 9                  | 25.71%               |        |           |
|      |                      | C.glabrata      | 8                  | 22.85%               |        |           |
|      |                      | C.tropcalis     | 3                  | 8.57%                |        |           |
| SDA  | PDA                  | C. parapsilosis | 2                  | 5.71%                | 75.7   | <0.0001** |
|      | A. flavus            | 7               | 20%                |                      |        |           |
|      |                      | R. mucilaginosa | 2                  | 5.71%                |        |           |
|      |                      | C. neoformans   | 4                  | 11.42%               |        |           |

### **Discussion:**

Fungal infections are caused by opportunistic infections, i.e. infections caused by fungi that coexist peacefully and harmlessly in the host's body and then transform into pathogenic fungi that cause disease when the host's immune system is weakened for some reason, e.g. by taking medication.Immunosuppressive effects caused by

contaminated surgery, contaminated medical devices and equipment, and organ transplants (Verma, 2018).

It has been shown that many complications can occur during dialysis sessions and/or with long-term use of dialysis. In a study conducted by Ali, et al. (2019), he showed that fungal infections associated with catheters are common in double lumen dialysis patients, as out of

(129) patients, the percentage of catheter-related infections was 19 or 14.7% (Ali, et al., 2019).

These results do not agree with those of Shuaib et al. (2020), who isolated 277 fungal isolates from 115 clinical blood samples from dialysis patients with kidney failure and healthy people. He found that the main fungal genera isolated from the blood were: *Alternaria*, *Penicillium*, *A. flauvs*, *Candida* and *Cladosporium*, but they agree with the same researcher regarding the Candida species, as the researcher included the species: *C. albicans* and *C. glabrata*.

Candida are yeast fungi that naturally occur in the body, but they become opportunistic fungi, i.e. they infect humans when the immune system is weakened, e.g. by chemotherapy, diabetes or organ transplantation (Muhsen, et al, 2021).

In a study with 120 samples from the mouth, urine and vagina, the percentage of positive samples for *Candida* isolates was 28.67, 4.00 and 1.67 respectively (Alqaysi et al, 2021). In one study, it was shown that the most common types of *Candida* isolated from intestinal patients were five yeast species, namely: *C. albicans*, *C.glabarta*, *C.tropicales*, *C. parapsilosis*, *C.krusi C.parapsilosis*, *Aspergillus*, *Penicillium*, *Muocr*, *Rhizopous*, *Saccharomycosis*, and *Cryptococcus* (Hasan et al., 2023).

This result is also in line with Goffena et al. (2018), who found that the role of the hormone estrogen during pregnancy is to increase the ability of epithelial cells to adhere to the ovaries and that this hormone also plays a role in the transformation of the ovaries from the yeast form to the filamentous form. In a study conducted by Potthuri and Arun (2023), Twenty (46.5%) of the 43 patients receiving dialysis for chronic renal disease were male, and 23 (53.5%) were female. The patients were between the ages of 28 and 86. As for the BacT/ALERT results, the results are consistent with those found by Menchinelli et al. (2019) using the BacT/ALERT bottle in 50 diagnosed cases of Candida spp. candidaemia. Only 40% of the BacT/ALERT bottles tested positive within 24 hours. The results of microscopic examination are also in agreement with Majeed (2018) who mentioned all the features seen under the microscope were in the form of spherical or oval shaped cells with bluish-green margins due to the accumulation of dye on the positive wall of the Gram stain. Jasem et al. (2017) found that the Aspergillus fungus grew best on Sabouraud's dextrose agar medium.

### **Conclusion:**

This study proves that kidney failure increases the incidence of fungal infections and that gender (male or female), age group and people undergoing dialysis or not have an influence on fungal infections. The BacT/ALERT tests gave results that were consistent with the morphological and microscopic diagnosis, and on chromium Agar.

### References

- 1. (باحث) Abdul-Jabbar, M. A., & Kadhim, D. J. (2022). Adherence to Different Treatment Modalities among Patients on Maintenance Hemodialysis. Iraqi Journal of Pharmaceutical Sciences (P-ISSN 1683-3597 E-ISSN 2521-3512), 31(1), 95-101.
- 2. (مجلة) Abed, F. A., & Mahmood, M. A. (2023). Evaluation of CRP, IL-6 and Calprotectin in Saliva of Patients Suffering from Crohn's Disease (CD). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(4), 102-109.
- 3. (مجلة ) AL-Qadhi, I. Y., & AL-Saadi, B. Q. (2022). Impact of IL-4R (rs1805011) Gene Polymorphism on IL-4 Serum Level in Iraqi Allergic Asthma Patients. Iraqi journal of biotechnology, 21(2).
- 4. Ali M, Das B, Kumar S (2019): Catheter related infection in hemodialysis patients with double lumen catheter. The Professional Medical Journal, 26(08):1278-82.
- Alqaysi, N. N., Muhsen, T. A., & Risan, M. H. (2021). DIAGNOSTIC STUDY OF CANDIDIASIS IN THE MOUTH, URINE AND VAGINA OF DIABETIC AND HEALTHY PEOPLE. Biochemical & Cellular Archives, 21.(2).
- 6. Alsaedi, S.A.M and Al-hashimy, A.B.J.,(2022). The Effect of Bacterial DNA and Hemodialysis Therapy Conditions on Interleukin 6 Levels Variation in End-stage Renal Disease Patients. Department of Biotechnology, Institute of Genetic Engineering and Biotechnology for postgraduate studies, University of Baghdad, Baghdad, Iraq. Accepted: 10th August, 2022.
- Altaie, Z. L., & Al, B. Q. A. A. J. (2022). Association of Fibroblast Growth Factor-23 and Tumor Necrosis Factor-α with Autosomal Dominant Polycystic Kidney Disease in Iraqi Patients. Iraqi journal of biotechnology, 21(2).
- باحث) Hamid, G. S., Allawi, A. A., & Ghudhaib, K. K. (2021). Correlation of pentosidine with kidney diseases in Iraqi patients with diabetic nephropathy. Iraqi Journal of Science, Vol. 62, No. 10, pp. 3436-3442.

- Balaky, H. M., Mustafa, A. J., & Ismail, P. A. (2023). Clinical significance of Osteoprotegerin, Vitamin D, Obestatin and some biochemical variables in Kidney failure Patients. Iraqi Journal of Pharmaceutical Sciences (P-ISSN 1683-3597 E-ISSN 2521-3512), 32(1), 59-66.
- 10. de Hoog, G. S., Guarro, J., Gené, J., & Figueras, M. J. (2005). Atlas of clinical fungi.
- 11. Deorukhkar, S. C., Saini, S., & Mathew, S. (2014). Non-albicans Candida infection: an emerging threat. Interdisciplinary perspectives on infectious diseases, 2014.
- Ghaddar, N., Anastasiadis, E., Halimeh, R., Ghaddar, A., Dhar, R., AlFouzan, W., ... & El Chaar, M. (2020). Prevalence and antifungal susceptibility of Candida albicans causing vaginal discharge among pregnant women in Lebanon. BMC infectious diseases, 20(1), 1-9.
- 13. Goffena, J., Toenjes, K. A., & Butler, D. K. (2018). Inhibition of yeast-to-filamentous growth transitions in Candida albicans by a small molecule inducer of mammalian apoptosis. Yeast, 35(3), 291-298.
- Hamid, G. S., Allawi, A. A., & Ghudhaib, K. K. (2021). Correlation of pentosidine with kidney diseases in Iraqi patients with diabetic nephropathy. Iraqi Journal of Science, 3436-3442.
- 15. (Zero Citation تسلسل 140 لتسلسل ) Jaloud, R. E., & Hassan, F. F. (2009). Isolation and Identification of Fungal Propagation in Iraqi Meat and Detection of Aflatoxin B1 Using ELISA Technique. Journal of Global Pharma Technology; 10(08):231-240.
- Hasan, A. S., Muhsen, T. A., & Alabassi, H. M. (2023). Diagnostic study of the most important fungal infections associated with some inflammatory bowel disease in Iraqi patients. Acta Biomed, 94(2), e2023138.
- 17. (Zero Citation كسلسك 32 بالقائمة ) Al-Naqqash, S., Jawad, M. M., Al-Asady, Z. T. S., & Abdulrazaq, S. A. (2021). Evaluation of EOS Gene Expression and IL-6 Serum Levels in Iraqi Patients with Psoriasis. Al-Rafidain Journal of Medical Sciences (ISSN 2789-3219), 1, 89-93.
- 18. Hasan, T. F., AL-Abassi, H. M., & Ali, H. Z. (2021). CYTOKINES SERUM PROFILE IMMUNOSUPPRESSANT BALB/C MICE INFECTED WITH CRYPTOSPORIDIUM PARVUM. Biochemical & Cellular Archives, 21(2)
- 19. Hemaid, A. S. S., Abdelghany, M. M. E and Abdelghany, T. M. (2021). Isolation and

- identification of Candida spp. From immunocompromised patients . Bull. Nat. Res. Cen. 45(163):1-8 PP.
- 20. Jasem, B. A., AL-azawi, T. H., Oudah, L. K., & Mzahem, N. A. A.(2017) EFFET OF SOME ISOLATION FROM FUGI BAGHDAD HOSPITAL ON PHYSIOLOGY OF LIVER, KIDNEY AND TESTIS IN ALBINO MALE MICE. Iraqi Journal of Market Research and Consumer Protection ,9 (1).
- 21. Kim K, Kwon H, Park S et al. The Effectiveness of Pediatric Blood Culture Bottle in Endophthalmitis. Journal of the Korean Ophthalmological Society. 2015;56(9):1365.
- 22. Lee Y. Puumala E. Robbins N. and Cowen L. E. (2021). Antifungal Drug Resistance: Molecular Mechanisms in *Candida albicans* and beyond. Chemical Reviews 121(6) 3390–3411.
  - https://doi.org/10.1021/acs.chemrev.0c00199.
- 23. Mader, S. S. (2008). Human Biology,10th Ed. McGraw Hill, New York: 188.
- 24. Majeed ,A.R.H.(2018). Mycological Causes of Diarrhea among Children in Diyala. M.Sc.Thesis, College of Medicine, University of Diyala.(pp):116.
- 25. Menchinelli, G., Liotti, F. M., Fiori, B., De Angelis, G., D'Inzeo, T., Giordano, L., ... & Spanu, T. (2019). In vitro evaluation of BACT/ALERT® VIRTUO®, BACT/ALERT 3D®, and BACTECTM FX automated blood culture systems for detection of microbial pathogens using simulated human blood samples. Frontiers in Microbiology, 10, 221.
- Mohammed, S. R., & AL-Jibouri, M. H. (2015). Isolation and identification of fungi from two hospitals in Baghdad city and effect of disinfectants on some fungi. Iraqi Journal of Science, 673-682.
- 27. Mora, Camilo, et al. "How many species are there on Earth and in the ocean?." *PLoS biology* 9.8 (2011): e1001127.
- 28. Muhsen, T. A., Risan, M. H., & Alqaysi, N. N. Candida Berkh.(1923) Species and Their Important Secreted Aspartyl Proteinases (SAP) Genes Isolated from Diabetic Patients.
- 29. Nicki R, Brain R.Walker, Sturat H. Ralston, "kidney and urnary tract disease", Davidson's Principles and Practice of Medicine 21th Ed, 2010. P. 462.
- 30. Potthuri, I., & Arun, I. C. (2023). A Cross-Sectional Study of Dermatologic Manifestations in Patients with Chronic Renal Failure on Hemodialysis. Clinical Dermatology Review, 7(3), 223-228.

- 31. Rajasinghe, M. ; Abeywickrama, K. and Jayasekera, R. (2009) . Aflatoxigenic Aspergillus flavus and Aflatoxin formation in selected spices during storage. Trop. Agr. Res. Ext., 12(1):1-6.
- 32. ( zero citation بالقائمة 129 تسلسل ) Ridha, H. S., & Kadri, Z. H. (2018). Assessment of some immunological biomarkers in saliva and serum of Iraqi patients with chronic periodontitis disease. Journal of Pharmaceutical Sciences and Research, 10(11), 2998-3000.
- Physiology: From Cells to Systems 4th Canadian Edition. 560-561.
- 34. Shuaib, A., Hasan, A., & Ibraheem, N. (2020). hemodialysis renal failure disease. J Crit Rev, 7, 1192-1198.
- 35. Verma Sh, Kumar B T, RaphaeV, Thappa D M,(2018), Epidemiology of Subcutaneous Mycoses in Northeast India: A Retrospective Study, ndian J Dermatol; 63(6): 496–501.
- 36. (مجلة )Saleh, M. A. D., & Albayati, A. M. H. (2017). Inflammatory role of some cytokines, immunoglobulins and immunopathogenesis of renal failure complement proteins in in a sample of Divala province patients. Baghdad Science Journal, 14(2), 247-253.
- 37. ( مجلة ) Sahib, A. A., & Al-Shaikely, A. W. A. (2008). Evaluation of the Role of Interleukein-2 and Interleukein-4 in the Immunopathogenesis of Steroid Therapy Resistance in Iraqi Asthmatic Patients. Iraqi Journal of Pharmaceutical Sciences (P-ISSN 1683-3597 E-ISSN 2521-3512), 17(1), 47-54.
- 38. (مجلة ) Wahid, H. H. A., Turki, K. M., & AI-Tharb, A. Y. (2006). Interleukin-6 Level in serm of Iraqi Patients on Maintenance Hemodialysis Therapy. Journal of the Faculty of Medicine Baghdad, 48(4), 431-434.
- 39. Bongomin, F., Gago, S., Oladele, R.O. and Denning, D.W.( 2017). Global and multinational prevalence of fungal diseasesestimate precision. Journal of fungi, 3(4), p.57.
- 40. Liebana-Jordan 'M. 'Brotons 'B. 'Falcon-Perez 'J. M. 'and Gonzalez 'E. (2021). Extracellular vesicles in the fungi kingdom. International Journal of Molecular Sciences 4 22(13) 47221.

دور الاصابات الفطرية في امراضية المصابين بامراض الكلى الخاضعين وغير الخاضعين للغسيل الكلوي ثامر عبد سندس صالح مهدي 1 الشهيد محسن2

1+2 كلية التربية للعلوم الصرفة ابن الهيثم اجامعة

الخلاصة

أظهرت نتائج العزل والتشخيص المظهري والمجهري وكرومك آكار و بتقنية الفايتك و من خلال Bact alert تشخيص الفطريات المعزولة من عينات دم مرضى الكلى في المرحلة النهائية غير الخاضعين للغسيل الكلوي والخاضعين للغسل الكلوي والتي بلغت 60 عينة لكل نوع ، إذ Sherwood, L., & Ward, C. (2019). Human بلغ العدد الكلى للعز لات الفطرية المعزولة من الأشخاص غير الخاضعين للغسيل الكلوي 26 عزلة فطرية ممرضة و بنسبة مئوية للظهور بلغت 43.33 % و شخصت هذه الدراسة 4 أجناس من الفطريات الممرضة هي Distribution of patients infections with Cryptococcus spp. · Rhodotorula spp. · Candida spp. : و. Aspergillus spp. إذ بلغ عدد عزلات الـ Aspergillus spp. وبنسبة 50% كما كشفت النتائج أن النوع الذي شخص من جنس هو Rhodotorula هو R. mucilaginosa بنسبة تردد 19.23 % في C. كان Cryptococcus كان كين أن النوع الذي شخص من جنس neoformans وبنسبة تردد 7.69 % ، كما بينت النتائج أن النوع الذي شخص من جنس Aspergillus هو A. flavus و بنسبة تردد 23.07 %. أما نتائج العزل والتشخيص للعينات الخاضعة للغسيل الكلوي فقد بلغ العدد الكلى للُّعز لات الفطرية المعزولة من عينات المرضى 35 عزلة فطرية ممرضة و بنسبة مئوية للظهور بلغت 58.33 % و بلغ عدد عزلات الـ 23 Candida عزلة ممرضة وبنسبة 65.71 %.

الكلمات المفتاحية: الفشل الكلوي ، أمراض الكلى ، الإصابات الفطرية .