DETECTION OF GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA FROM IRAQI WOMEN INFECTED WITH POLYCYSTIC OVARY SYNDROME

- ^{1.}Wajida Ataallah El-beaty* and Hiyam Adel Altaii^{2*}
- ¹ Department of Biology, College of Science, University of Mosul, Mosul- Iraq.
- ²Department of Biology, College of Science, University of Mosul, Mosul- Iraq.
- *Corresponding author: Wajida Ataallah El-beaty
- *Email: wajida.23scp119@student.uomosul.edu.iq

Abstract

Polycystic ovary syndrome is an endocrine disorder affecting women of reproductive age with a worldwide prevalence of approximately 8-13%. In patients with PCOS, numerous small cysts (fluid-filled sacs) form in the ovaries. Typical clinical features include abnormally high levels of androgens, irregular menstrual cycles, hirsutism, acne, obesity, and infertility. PCOS pathogenesis remains elusive, but emerging research highlights the role of human microbiome in its occurrence and progression . the total number of samples 60 vaginal swabs. Vaginal swab samples were collected from women with polycystic ovary syndrome. During the period between 10 November 2023 and 20 February 2024 in Mosul City hospitals (Al-Khansa Teaching Hospital and Al-Salam Teaching Hospital), included different age groups ranging from 18 to 45 years. The aim of this study was to detect gram positive and gram negative bacteria in high vaginal swab from polycystic ovary syndrome. The result showed 15 were Gram-positive bacterial isolates (25%) and 45 were Gram-negative bacterial isolates (75%) . The result showed that the vaginal infection more frequent in age between (27-35) years old. According to age groupings, the age group (27-35) years old had the highest prevalence of vaginal infection with bacteria among patients (26; 43.34 %), 4 patients (6.67%), for Gram-positive bacterial. Conclusion there is microbial diversity in the vaginal microbiota. Incidence with Gram-negative bacteria were predominant more than Gram-positive bacteria in PCOS patients especially Staphylococcus. spp and E. coli in PCOS women.

Keywords: PCOS, Gram-positive, Gram-negative, HVS.16Sr RNA.

Introduction

Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting women of reproductive age with a worldwide prevalence of approximately 8–13%(Zheng et al., 2024). In patients with PCOS, numerous small cysts (fluid-filled sacs) form in the ovaries. Typical clinical features include abnormally high levels of androgens, irregular menstrual cycles, hirsutism, acne, obesity, and infertility(Jobira et al., 2020). PCOS pathogenesis remains elusive, but emerging research highlights the role of human microbiome in its occurrence and progression (Duan et al., 2021). Studies have shown that PCOS is associated with dysbiosis of the gut microbiota (Jobira et al., 2020;Sun et al., 2023) A few studies indicate that changes in the microbiome might have a role in the development of PCOS (Giampaolino et al., 2021). Despite recent research showing a link between disruptions in the gut microbiome and the development of metabolic diseases. But the correlation between

different vaginal microbiomes and the etiology and pathogenesis of PCOS is poorly understood (Hong et al., 2020). Numerous typical microbial and fungal groups, with lactobacilli as the predominant genus, colonize the vagina of a healthy female. These groups are categorized as beneficial microbes and opportunistic pathogens (Chen et al., 2017). Patients with PCOS have reduced diversity and altered composition of the gut microbiota, such as a decrease in Lactobacillus and Bifidobacterium, and an impaired intestinal mucosal barrier, compared to those without any health problems. The alterations in the gut microbiota have been linked to levels of inflammation and insulin resistance, by altering the stability of the intestinal. In women of reproductive age, a healthy vaginal microbiome typically exhibits a low pH (4.2 to 5.0) in different ethnic groups, with a limited presence of dominant facultative anaerobic bacteria, such as Lactobacillus crispatus and L. inner, which help maintain an acidic environment and produce H2O2 as

a defense against pathogen invasion (Hong et al., 2020; Wright et al., 2021). The main variables influencing the vaginal microbiota include the effects of estrogen and progesterone on vaginal epithelial cells, PH, sexual activity, menstruation, and antibiotic use (Smith et al., 2017). As vaginal bacteria are an essential component of the reproductive tract's milieu, the body gains from their homeostasis. (Moosa et al., 2020). There is mounting evidence that a woman's vaginal microbiota composition can have a major impact on her sexual and reproductive health, including her risk of HIV infection and other STDs, as well as unfavourable delivery outcomes like miscarriage and premature delivery (Elovitz et al.,2019; Mohamed et al., 2020). Also, all Gramnegative bacteria, like E. coli, have the most important structure in their cell walls, stimulate the immune system, and produce many cytokines such as TNF- α and IL-6 (Torcia et al.,2019). Along with vaginal bacteria, neutrophils, macrophages, classical dendritic cells, Langerhans cells, NK cells, T and B lymphocytes, and other innate and adaptive immune cells, the stratified squamous epithelial cells that cover the mucus layer are a part of the vaginal ecosystem (Tu et al., 2020). All Gram-negative bacteria, like E. coli, have the most important structure in their cell wall, stimulate the immune system, and produce many cytokines such as TNF- α and IL-6 (Torcia et al.,2019).

Material and Methods

This study was conducted in Nineveh Governorate, the total number of samples 60 vaginal swabs. Vaginal swab samples were collected from women with polycystic ovary syndrome. During the period between 10 November 2023 and 20 February 2024 in Mosul City hospitals (Al-Khansa Teaching Hospital and Al-Salam Teaching Hospital), included different age groups ranging from 18 to 45 years. Specialised gynaecologists collected vaginal swab samples from the lateral posterior vaginal fornix using Amies transport medium. After that, the samples were sent directly to the university of Mosul's microbiology lab while following to standard laboratory procedures. Freshly prepared media (Nutrient agar, MacConkey agar, Blood agar, Chocolate agar) were prepared for isolation and identification of bacteria: the medium was inoculated with the swab and incubated aerobically and anaerobically(CO₂) at 37° C for 24 hours. All isolates were purified by sub-culturing and Table (1): List of primers used in this study.

then Gram stain was applied for differentiation between isolated bacteria under oil immersion (100X). The isolated and purified bacteria was identified according to the bacterial morphology and colony characters. then, all isolated bacteria were identified by the VITEK-2 Compact bioMérieux, VITEK-2 cards were inoculated following the manufacturer's instructions and the freshly bacterial culture were used which have less than 18hrs age, also we use extract bacterial genome by using (Geneaid bacterial extraction kit) then sent 16sr sequence for some variable isolate and then submitted in NCBI.

Identification By Using Vitik-2Compact System

(60) bacterial isolates from PCOS patients were examined using Vitek-2compact system at the university of Mosul's microbiology lab. The identified of Gram-positive and Gram-negative bacterial isolates were confirmed with the automated Vitek-2compact system by using GPB-592 Kit (ID) and GNB-222Kit(ID) cards). The cards have bar codes that contain information on product type, lot number and expiration date. The biochemical interactions between both the media in the VITEK-2compact system identification cards and the bacterial specimens suspended in their solutions were measuring various metabolic activities (64) tests, required up to (6) hours to identify (115) Gram-positive taxa and (135) Gramnegative taxa. All the following steps are prepared according to the manufacturer's instructions (BioMerieux, France).

Identification By 16S rRNA Gene Sequencing

Colonies that were that not detected by Vitik-2Compact System ,were further identified by 16S rRNA gene sequencing. PCR products were run on 1% agarose and stained with Midori Green Advance DNA stain (Germany). Purified PCR products were sent for sequencing at Psomagen company (USA).

PCR And Genomic DNA Isolation

DNA was extracted from bacterial isolate using Geneaid DNA extraction kit following the steps recommended by the company. Primers used for amplification and estimated product size for 16rs in table (1). PCR of 16rs genes was performed in 25µl reaction using Promega master mix following recommended conditions and using the protocols listed in tables (2), respectively. Amplification of 16S rRNA gene was conducted as shown in table (3).

Primer name	Sequence (5' - 3')	Product (bp)	size	Reference
27F	AGAGTTTGATCMTGGCTCAG	1500		(Nagara et al., 2017)
1522R	AAGGAGGTGATCCARCCGCA			

Table (2): Components Of The Polymerase Chain Reaction Mixture And Their Sizes

NO.	Components	Volume in microliters
1	DNA Template	3 μ1
2	Primer Forward	2 μ1
3	Primer Reverse	2 μ1
4	Nuclease free water	6 µl
5	Taq Green master mix	12 μ1
6	Final volum	25 μ1

Table (3): Conditions for amplifying the 16S rRNA gene from all isolates

NO.	Main steps	No. of cycles	Temperature C°	Time
1	Initial denaturation	1	95	3 minutes
2	Denaturation		95	30 seconds
3	Annealing	30	54	30 seconds
4	Extention		72	30 seconds
5	Final Extention	1	72	3 minutes

Results

Sixty vaginal swab collected from PCOS women that revealed, of the 60 PCOS patients, 15 were Grampositive bacterial isolates (25%) and 45 were Gramnegative bacterial isolates (75%) shown in table (4). The result showed that the vaginal infection more frequent in age between (27-35) years old. According to age groupings, the age group(27-35)years old had the highest prevalence of vaginal infection with bacteria among patients (26; 43.34 %), 4 patients (6.67%), for Gram-positive bacterial. The results in

table (5) showed that most PCOS women infected with Staphylococcus. spp (No.=11; 18.33%) and E. coli (No.= 22;36.67%%) were the most common isolates PCOS women. The bacterial isolate that submitted in NCBI were; Stutzerimonas stutzeri strain WAHI, Klebsiella pneumonia strain WAHI1, Klebsiella pneumonia strain WAHI24, Klebsiella pneumonia strain WAHI94, Klebsiella pneumonia strain WAHI15, Klebsiella pneumonia strain HIWA, Proteus mirabiliss strain HIWA1, Escherichia coli strain HIWA24, Klebsiella pneumonia strain HIWA94 And their bands as shown in figure (1).

Table (4): Distribution of gram positive and gram negative bacterial isolate according to age and their percentage.

Ages (years)		Bacterial g	Total				
Ages (years)	G + ve		G -ve		1		
	NO.	%	NO.	%	NO.	%	
18-26	5	8.33%	19	31.6%	24	39.9%	
27-35	4	6.67%	22	36.67%	26	43.3%	
36-45	6	10%	4	6.67%	10	16.6%	
Total	15	25%	45	75%	60	100%	

No. means count of isolate ,Gr + means gram positive bacteria , Gr - means gram negative bacteria TABLE (5): Frequency of bacterial identified isolated from HVS specimens of Iraqi women with PCOS.

Types of bacterial isolates	PCOS infection	women on	with	HVS
	No.	No. %		

Staphylococcus aureus	5	8.33%
Staphylococcus haemolyticus	6	10%
Streptococcus thoraltensis	1	1.66%
Enerococcus faecalis	3	5%
Escherichia coli	22	36.67%
Klebsiella pneumoniae	20	33.33
Proteus mirabilis	2	3.33
Pseudomonas stutzeri	1	1.67
Total	60	100%

PCOS: polycystic ovary syndrome, HVS: high vaginal swab, No: means count of isolate

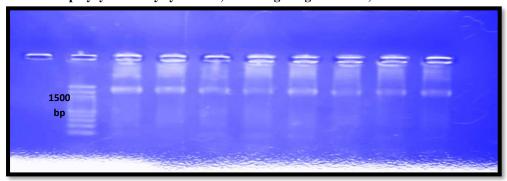


Figure (1): Agarose gel electrophoresis patterns show amplified PCR products of 16Sr RNA

AST And MICs Profile For Gram-Positive Bacteria:

Table (6):AST And MICs Profile For S. aureus, CoNS And E. faecalis

RESEARCH

O&G Forum 2024; 34 – 3s: 1976-1989

CoNS: Coagulase-Negative Staphylococcus

N	Antibiotics		S. aure	us (2)		CoNS (4)		E. faec	ecalis (2)		
			S (100	R (100	MIC	S (100%)	R (100%)	MIC	S (100	R (100	MIC	
1	Benzylpenicillin	P	1(50)	1(50	>=	1(25)	3(75)	<=	2(100	0(0)	<=0.5	
2	Clindamycin	CM	1(50)	1(50	<=0.	0(0)	4(100)	2	0(0)	2(100	8	
3	Erythromycin	ER	1(50)	1(50	>= 8	0(0)	4(100)	>= 8	0(0)	2(100	<= 8	
4	Gentamicin	GM	2(100	0(0)	<=	1(25)	3(75)	<=	1(50)	1(50)	<= 0.5	
5	Ciprofloxacin	CIP	0(0)	0(0)	0	2(50)	2(50)	1	2(100	0(0)	1	
6	Oxacillin	OX	2(100	0(0)	>= 4	0(0)	4(100)	>= 4	0(0)	2(100	<= 4	
7	Rifampicin	RA	1(50)	1(50	<=	0(0)	4(100)	>=32	0(0)	2(100	>= 32	
8	Teicoplanin		2(100	0(0)	<=	1(25)	3(75)	1	2(100	0(0)	<=	
9	Tetracycline	TE	1(50)	1(50	<= 1	0(0)	4(100)	16	0(0)	2(100	>= 16	
10	Tigecycline	TI	2(100	0(0)	<=0.	4(100)	0(0)	0.5	2(100	0(0)	<=	
11	Trimethoprim/ Sulfamethoxazole	SX	2(100	0(0)	<=	3(75)	1(25)	<= 10	0(0)	2(100	<= 10	
12	Vancomycin	VA	2(100	0(0)	1	3(75)	1(25)	4	1(50)	1(50)	8	

Table(7):AST And MICs Profile For E. coli And K. pneumonia

		O&G,Forum 2024: 34 3s: 1976-1989							
NI.	A m4th to 4th or		E. coli (4)			<i>V</i>			
No	Antibiotics	S E. con (2	4)	MIC	K. pneumonia (2)				
•				D(1000/)	MIC	S (100%)	R (1000()	MIC	
		A 77	(100%)	R(100%)	2	2(100)	(100%)	2	
1	Amikacin	AK	4(100)	0(0)	<= 2	2(100)	0(0)	<= 2	
2	Cefepime	FED	2(50)	2(50)	2	0(0)	2(100)	>= 64	
3	Ceftazidime	CTX	0(0)	4(100)	16	1(50)	1(50)	>= 64	
4	Ciprofloxacin	CIP	2(50)	2(50)	<= 0.25	1(50)	1(50)	>= 4	
5	Gentamicin	GM	3(75)	1(25)	<= 1	2(100)	0(0)	<= 1	
6	Imipenem	IPM	4(100)	0(0)	<= 0.25	2(100)	0(0)	<= 0.25	
7	Meropenem	MEM	4(100)	0(0)	<= 0.25	2(100)	0(0)	1	
8	Piperacillin	P	0(0)	4(100)	>= 128	0(0)	2(100)	>= 128	
9	Piperacillin/Tazobacta	TZP	0(0)	4(100)	>= 128	0(0)	2(100)	>= 128	
	m								
10	Ticarcillin	TIC	0(0)	4(100)	>= 128	0(0)	2(100)	>= 128	
11	Ficarcillin/Clavulanic	TIC	0(0)	4(100)	<= 8	1(50)	1(50)	>= 128	
	Acid								
12	Trimethoprim/	SXT	3(75)	1(25)	<= 20	1(50)	1(50)	64	
	ulfamethoxazole								
13	obramycin	TOB	2(50)	2(50)	<= 1	0(0)	2(100)	4	

Table (8): AST And MICs Profile For P. stutzeri And Proteus. mirabilis

NO	Antibiotics	P. stutzer	i (1)		Proteus. mirabilis(2)			
			S (100%)	R(100%	MIC	S (100%)	R (100%)	MIC
1	Amikacin	AK	1(100)	0(0)	4	2(100)	0(0)	<= 2
2	Cefepime	FED	1(100)	0(0)	16	2(100)	0(0)	8
3	Ceftazidime	CTX	1(100)	0(0)	8	2(100)	0(0)	8
4	Ciprofloxacin	CIP	0(0)	1(100)	>= 4	0(0)	2(100)	>= 4
5	Gentamicin	GM	1(100)	0(0)	<= 1	1(50)	1(50)	4
6	Imipenem	IPM	1(100)	0(0)	1	0(0)	2(100)	8
7	Meropenem	MEM	1(100)	0(0)	1	2(100)	0(0)	1
8	Piperacillin	P	0(0)	1(100)	>= 64	0(0)	2(100)	>= 128
9	Piperacillin/Tazobacta	TZP	0(0)	1(100)	>=	2(100)	0(0)	8
	m				128			
10	Ticarcillin	TIC	0(0)	1(100)	>=	0(0)	2(100)	>= 128
					128			
11	Ticarcillin/Clavulanic	TIC	1(100)	0(0)	<= 32	0(0)	2(100)	>= 128
	Acid							
12	Trimethoprim/	SXT	0(0)	1(100)	>=	0(0)	2(100)	>= 320
	Sulfamethoxazole				320			
13	Tobramycin	TOB	0(0)	1(100)	8	0(0)	2(100)	8

Discussion

The results in table (5) showed that most PCOS women isolates PCOS women. According to the results of our Escherichia coli, and Klebsiella pneumoniae) were found, investigation, bacterial vaginal infections were present in along with some differences; however, some species of every woman with polycystic ovarian syndrome. In line bacteria such as (Staphylococcus haemolyticus) were with other recent studies, the current investigation of absent. Additionally, our study's results did not support the PCOS patients' vaginal reveals that these patients have

more diverse microbiomes (Hong et al., 2020; Ahmed et al., 2021). The findings of this investigation bear a infected with Staphylococcus. spp (No.=11; 18.33%) and Wandawy et al., 2020) in which the same species of similarity to those of a study conducted in 2021 (Al-E. coli (No.= 22;36.67%%) were the most common bacteria (Staphylococcus auras, Enerococcus faecalis,

group in that study had a suitable environment for the response and opsonophagocytosis. growth and multiplication of Candida. spp due to insulin resistance or glucose tolerance brought on by PCOS in humans, Enterococcus. spp are part of intestinal resistance or glucose tolerance brought on by PCOS migraphicts, they can be found in smaller proportions in recorded in NCBI.

Percentage Of Gram-Positive Bacterial Species:

Gram-positive isolates were represented bacterial species which were also obtained by other al., 2022). investigator with a local study in Baghdad ,Iraq (Al-Wandawy et al., 2020). Also, in our current study, we were able to diagnosis rare case with streptococcus thoraltensis locally previous studies (de Jong et al., 2022) environment (Weber et al., 2019).

the major pathogen worldwide and associated with "pili" or "fimbriae" that facilitate the initial attachment to

findings of that study, which suggested that the PCOS produced by CoNS, since slim can reduce the immune

resistance or glucose tolerance brought on by PCOS In humans, *Enterococcus. spp* are part of intestinal pathology. In the current study didn't detect Neisseria gonorrhea or Chlamydia trachomatis, this result not agreed with (3) study who found abundant Chlamydia trachomatis in the PCOS group, this differences in the result may be explained by the variations in the cultural approaches used, the social and ethnic diversity of the two study communities, and the sample size could all contribute to the differences in the results. In this study we detected many other microbiotas e.g. (*strentococcus thoraltensis* many other microbiotas e.g. (*streptococcus thoraltensis*, between 5 and 50 °C and pH as high as 9.6 . The the genus Pseudomonas stutzeri), All members of temperature resistance is linked to the high content of lipids and fatty acids in the membrane. The ability to survive in high pH and the presence of bile salts and enzymes allows and disruption of vaginal flora in PCOS group. There was some of this isolates detected by 16rs technique and et al.,2021). Among Enterococcus species Enterococcus species. some of this isolates detected by 16rs technique and al.,2021). Among Enterococcus species, Enterococcus faecalis is the primary species responsible for human enterococcal infections .Treatment faecalis infections has become increasingly difficult by because of the emergence of E. faecalis strains that are Staphylococcus aureus 5/15(%) and Staphylococcus resistant to numerous clinically used antibiotics (Jennings haemolyticus also accounted for 6/15(%), they were et al.,2024). Enterococci are common commensal bacteria predominant isolate followed by *Enerococcus faecalis* that colonize the gastrointestinal tracts of most mammals, 3/15(%) and streptococcus thoraltensis 1/15(%). Our including humans. Importantly, these bacteria are one of results table (5) indicated the presence of G-positive the leading causes of nosocomial infections (Ibraheem et

Percentage Of Gram-Negative Bacterial Species

Gram-negative bacterial isolate were represented by K. in vaginal infection by using Vitek 2system for patient pneumonia 20/45(%), E. coli 22/45(%), Pseudomonas women visiting Gynecology Consultation Unit in Mosul stutzeri 1/45(%) and Proteus mirabilis 2/45(%). The City Hospitals/Iraq, we notice rare cases reported by results indicated the presence of Gram-negative bacteria which were also obtained by other previous local Staphylococcus aureus The reason that makes S. aureus to studies (Al-Wandawy et al., 2020) vaginal infection in be more invasive among Gram-positive organisms and an PCOS women Escherichia coli was the most common important predominance pathogen that leads to vaginal pathogen present in UTI and HVI in PCOS women that infection can be ascribed to the virulence factors, since S. agreeing with (Al-Musawy et al., 2018, Al-Wandawy et al., aureus has four proteins having important roles in 2020) respectively who confirm in their studies that the E. pathogenicity by allowing bacteria to avoid host defenses coli was the most prevalent bacteria, possible E. coli and by acting as adhesions, which have been characterized: infections in females because they are more susceptible to protein A (immunoglobulin binding protein), collagen UTIs and bacterial vaginal infection than males due to binding protein, fibronectin binding proteins, and the anatomical differences, such as a shorter urethra and fibrinogen binding protein (clumping factor), (Nandhini et perineal contamination of the urinary tract with fecal al., 2022). Predominance of S. aureus also may be related microorganisms (Naqid et al., 2020). Since perianal and to its ability to resist many antibiotics especially vaginal commensals are the most common sources of methicillin (MRSA) which facilitated its widespread to uropathogens, a focus on personal hygiene, especially in females, may be important to minimize uropathogenic infections(Vagarali et al., 2008, Subashchandrabose et al., Coagulase negative staphylococci (CoNS) appear to be 2017). E.coli display polymeric adhesive fibers termed

significant UTI and HVI, and it is considered the most epithelial cells and subsequent successful colonization of common organisms associated with UTI and HVI. In this the host. E.coli secretes a range of virulence components at study, CoNS represented the second pathogen among the host-pathogen interface, via membrane vesicle Gram-positive isolates . The reason of high rate of CoNS trafficking as bacterial outer membrane vesicles(OMVs) isolates may be related to the use of broad spectrum for invasion, endotoxic shock and other cell-cell antibiotics and to the role of specific adhesion and slime communications .E. coli's Fitness and ability to persist in

surroundings are improved by the ability to quickness the addition, possess an extensive variety of resistance metabolism of nutrient-rich conditions (Mendes et al., mechanisms against diverse group of antibiotics(Bisharat 2023).may also penetrate and reproduce within the et al., 2012). For a about 15-year time span after 1956, a bladder, generating biofilm-like intracellular bacterial few reports depicted the isolation of *Pseudomonas stutzeri* communities (IBCs) and creating intracellular reservoirs from clinical and neurotic samples (Jennings et al., 2024). for UTIs. Klebsiella pneumoniae is a gram-negative, In any case, there was no unmistakable relationship of this encapsulated, non-motile bacterium. K. pneumoniaespecies with pathogenesis cycle(Ibraheem et al., 2022). strains colonize the mucosal surfaces, including the However later, a couple of instances of Pseudomonas gastrointestinal tract and oropharynx and from these sites, stutzeri associated diseases have been accounted for in they can gain access to other tissues and cause life-relationship with bacteremia/septicemia, threatening infections (Podschun et al., 1998). its name infection, osteomyelitis, joint inflammation, endocarditis, comes from the German bacteriologist Edwin Klebs, who endophthalmitis, meningitis, pneumonia or potentially first identified it in the 19th century(Geng et al., 2024).empyema, ecthyma gangrenosum (Kose et al., exhibits the ability to form biofilms as a means of adapting 2004; Livermore et al., 2007).

to its adverse surroundings(Choby *et al.*, 2020). *Klebsiella pneumoniae is* considered to be the most common cause of **Identification By Using VITEK 2system** hospital-acquired infections (HAIs), accounting for 10% of Final identification for Gram-positive and Gram-

all nosocomial infections worldwide (Yang et al., 2023).negative bacterial isolates 60/60(100%) from PCOS Immunocompromised patients are at higher risk of HAIs, women were dependent on the VITEK 2system exhibited comprising 8% to 12% of hospitalized patients, excellent accuracy for the detection of bacterial isolates. particularly ventilator-associated pneumonia(Zhu et al., After isolation and identification, in this study, the 2023). This can result in life-threatening illnesses with bacterial isolates were distributed into (60) isolates, mortality rates ranging from 50% to 100% (Al-Busaidi et 45/60(75%)) belonging to Gram-negative bacteria were al., 2024; Janda et al., 2021). Proteus mirabilis is a species predominant.

of Gram-negative bacteria belonging to genus *Proteus* of Enterobacterales (Schaffer *et al.*, 2017), and is widely **AST And MICs Profile**

distributed in the natural environment and intestines of (8) isolates under study were subjected to an antibiotic humans and animals. P. mirabilis is one of the most susceptibility test and minimum inhibitory concentrations frequently opportunistic pathogen causing nosocomial in order to find out the prevalence of antibiotic resistance infection, especially causing urinary tract infection (Gongamong these isolates. In this test, different groups of et al., 2019). In addition, P. mirabilis infections can also antibiotics were used such as the group of Penicillins, βcause bacteremia and the formation of urinary stones. It is lactam-β-lactamase Carbapenems, worth noting that some food poisoning cases associated Cephalosporins, Glycopeptides, Aminoglycosides, with P. mirabilis had been reported in China, as well as Sulfonamides, Fluiroquinoline, and other group by using other countries (Choby et al., 2020). is a pathogenic, Gram-VITEK 2compact system for infection control, and restrict negative, rod-shaped bacterium, Swarming motility, urease therapeutic failures that may be triggered by the traditional production, biofilm formation, and the properties of its methods (Ahmed et al., 2021). The etiology of bacteria that lipopolysaccharide (LPS) are all factors that contribute to cause vaginal infection, urinary tract infection (UTIs), the virulence of this bacterium. That swarms across solidhospitalization-acquired infection and communitysurfaces, which often leads to catheter-associated urinary acquired infection, as well as their resistance to tract infections(speculum). The hindered eradication of P. antimicrobials, have changed over time and differs mirabilis results urinary in recurrent tractbetween countries(Magliano et al., 2012; Ahmed et infections(Tropea et al., 2007). Opportunistic pathogenic al., 2022).

bacteria that are leading causes of foodborne illnesses and

deaths is a serious threat to global public health (Lapage etAST And MICs Profile For Gram-Positive Bacteria al., 1968).

Pseudomonas stutzeri is common name stutzerimonas most antibiotics,

Most Gram-positive bacterial isolates were resistant to including stutzeri. rod shaped bacteria approximately1 to 3 μm long Clindamycin, Erythromycin, Gentamicin, Ciprofloxacin, and 0.5 µm in width, and have a solitary polar flagellum.11 Oxacillin, Teicoplanin, Tetracycline and Rifampicin, Phenotypic characteristics of the class incorporate a according to the results of antibiotic susceptibility tests. negative Gram stain, positive catalase and oxidase tests, Vancomycin,

Tigecycline and and a stringently respiratory metabolism(Tabassum *et al.*, Trimethoprim/Sulfamethoxazole were the most effective 2022). Is a nonfluorescent denitrifying bacterium broadly dispersed in the environment, that has been accounted for antibiotics against the majority of isolates. Treating as a causative specialist of certain diseases which has been examining the susceptibility pattern is helpful to identify been accounted as a cause of pneumonia, meningitis, visual been accounted as a cause of pneumonia, meningitis, visual disease, osteomyelitis and joint diseases. Thus, this species conventional antibiotics in recent years (Al-Jumaily *et al.*, could be considered an opportunistic but rare pathogen. In O&G Forum 2024; 34 - 3s: 1976-1989

2019). The results of the current study showed as shown 100% maximum sensitive to Gentamicin, Teicoplanin, thereby reducing the inflammatory response (Ali et al., Oxacillin, Trimethoprim/Sulfamethoxazole Tigecycline 2023). and Vancomycin. The results of this study somewhat agreed with the findings of another study by (Kareem et al.,2015) in Diyala, which found gentamycin sensitive phenol-soluble modulins (PSMs) is crucial for defence previous against the host immune system response especially study by (Kareem *et al.*, 2015, Jia *et al.*, 2020) showed high against the host immune system response, especially resistance to Tetracycline and Oxacillin 100%. Previous Additionally, S. epidermidis generates lipases that aid in Erythromycins against the tested *S. aureus* isolates were the survival of bacteria in fatty acid secretions from the sensitive agreed with our study. Another previous study by (Toner *et al.*, 2017) in Pakistan (H2 et al., 2019) in Pakistan (H2 et al., (Toner et al., 2017) in Pakistan, (He et al., 2018) in Vancomycin and Tigecycline antibiotic which also agreed resistant bacterial strains. The study also shows with our study. The study also shows that the MICs of Staphylococcus. aureus isolates were listed in table (6) below.

resistance mechanisms, including the expression of β -Ciprofloxacin, Oxacillin, Rifampicin, Tetracycline and level of resistance to clinically relevant antibiotics Trimethoprim/Sulfamethoxazole. (Oliveira-Tintino et al., 2023). The high minimum inhibitory concentration (MIC) is caused by both the high microbiota in humans and are found on skin and in production of the enzyme extended spectrum β-lactamase smaller proportions in oropharyngeal and vaginal (ESBLs), which hydrolyzes the β-lactam ring, and the secretions. Urinary tract infections, high vaginal presence of resistance genes, which prevent the antibiotic infections, endocarditis, and bacteremia are among the from working (Asante et al., 2022).

profiles regarding Coagulase-Negative the current status of limited antibiotic discovery besides Staphylococcus(CoNS) revealed most bacterial isolates the inappropriate use (misuse and overuse) of available most bacterial isolates antibiotics are unitable in the current status of limited antibiotic discovery besides the inappropriate use (misuse and overuse) of available most bacterial isolates antibiotics are unitable in the current status of limited antibiotic discovery besides the inappropriate use (misuse and overuse) of available most bacterial isolates antibiotic discovery besides antibiotic discovery besides the inappropriate use (misuse and overuse) of available most bacterial isolates antibiotic discovery besides antibiotic discovery besides antibiotic discovery besides and overuse of available most bacterial isolates antibiotic discovery besides antibiotic discove were highly resistant Benzylpenicillin, Clindamycin, Erythromycin, Ciprofloxacin, Oxacillin, Teicoplanin, Tetracycline, Rifampicin, Oxacillin and Tetracycline, whereas, 100% sensitive to Tigecycline and Vancomycin. Also CoNS isolates were 75% high sensitive to Trimethoprim/Sulfamethoxazole.

According to (França et al., 2023), CoNS strains are Piperacillin/Tazobactam, most frequently linked to high vaginal bacterial infection Ticarcillin/Clavulanic Acid, according to the results and are the most frequently isolated from infections of antibiotic susceptibility tests. Amikacin, Imipenem, associated with healthcare settings, particularly catheter-Meropenem and Trimethoprim/Sulfamethoxazole were related bacteremia and cardiovascular infections. Because the most effective antibiotics against the majority of of the ability of these isolates to form biofilms can facilitate isolates. According to the the results of AST-tests and their persistence in the local site or even in the systemic MICs as shown in Table(7) below, revealed E. coli circulation upon dissemination lead to emergence of isolates were 100% resistant to Ceftazidime, multiple bacteria resistant to antibiotics like Gentamicin, Piperacillin, Piperacillin/Tazobactam, Ticarcillin and Teicoplanin, Benzylpenicillin and Tetracycline(França et Ticarcillin/Clavulanic Acid whereas, 100% maximum al., 2023).

In addition to providing protection against antibiotics, in Table (6) below that all Staphylococcus aureus isolates the production of biofilm cells plays a significant role in were 50% resistant to Benzylpenicillin, Clindamycin, defence against host immune system attacks by reducing Ciprofloxacin, Rifampicin and Tetracycline. whereas the ability to activate the innate immune system and

The ability of CoNS isolates to secrete

All of which are risk factors for the bacteria's ability to Australia and (Ahmed et al., 2021) in China found that survive longer inside the host body, the immune system's none of Staphylococcus aureus isolates resistance forresistance, and the resulting development of antibiotic-

Regarding *E. fecalis*, the results of the study as shown A few years prior, it was discovered that the effectiveness of many antibiotics in treating in Table (6) below shows the results of an antimicrobial Staphylococcus spp. infections was decreasing, resulting in sensitivity test were 100% to Benzylpenicillin, treatment failure. Staphylococcus species exhibits multiple Ciprofloxacin, Teicoplanin and Tigecycline whereas, it

Enterococcus spp. belong to the intestinal many clinical infections that can be brought on by E. On the other hand, the results of AST-tests and MICs faecalis and E. faecium (Daca et al., 2024) And, due to to antibiotics, especially major contributors to the rise of Gentamicin, antimicrobial resistance [58].

AST And MICs Profile For Gram-Negative Bacteria

Most Gram-negative bacterial isolates were

resistant to most antibiotics, including Cefepime, Ceftazidime, Ciprofloxacin, Gentamicin, Piperacillin, sensitive towards Amikacin, Imipenem Meropenem. As for K.pneumonia isolates were 100%

resistant to Cefepime, Ceftazidime, Ciprofloxacin, Piperacillin, Piperacillin/Tazobactam, Ticarcillin, Ticarcillin/Clavulanic Acid, Trimethoprim/Sulfamethoxazole and Tobramycin. All of these isolates mentioned above were 100% sensitive to towards Amikacin, Gentamicin, Imipenem and The results of a previous study carried Meropenem. out in the Kurdistan Region of Iraq confirmed the previous findings, indicating that all isolates of pneumonia were 100% resistant to cefepime, cefotaxime, and ceftazidime. Another study by(Seman et al., 2022) reported different percentages of sensitive Ciprofloxacin, towards Amikacin, Piperacillin/tazobactam, Gentamicin Trimethoprime-sulfamethoxazole, these results agreed with the findings of this study. In Ethiopia(Zhang et al., 2019) found that antibiotics Meropenem, Imipenem, Ceftazidime/Avibactam, and Ceftolozane/Tazobactam had higher sensitivity against Carbape nemaseproducing and Extended Spectrum β-Lactamase Enterobacteriaceae isolates.

According to the results of AST-tests and MICs profile as shown in Table(8) below, revealed *P. stutzeri* isolates were 100% resistant to Ciprofloxacin, Piperacillin, Piperacillin/Tazobactam, Ticarcillin, Trimethoprim/Sulfamethoxazole and Tobramycin whereas, 100% maximum sensitive towards Amikacin, Cefepime, Ceftazidime, Gentamicin, Imipenem, Meropenem and Ticarcillin/Clavulanic Acid.

As for Proteus. mirabilis isolates were 100% resistant Ciprofloxacin, Imipenem, Piperacillin, Ticarcillin, Trimethoprim/ Sulfamethoxazole, Tobramycin and Ticarcillin/Clavulanic Acid whereas, maximum sensitive towards Amikacin, 100% Cefepime, Ceftazidime, Meropenem and Piperacillin/Tazobactam.

Researchers in the City of Mosul, Iraq (Younus et al., 2022) observed and reported the prevalence of the multidrug-resistant phenomenon of both Gram-positive and Gram-negative bacteria. The high prevalence of multidrug-resistant bacteria found in our study could be attributed to a variety of factors, including microbial traits, selective pressure on antimicrobial use, irrational antibiotic intake, the spread of resistant isolates among individuals, self-medication and medication noncompliance, and sales of substandard antibiotics. One of the major problems in modern medicine is the increasing resistance of pathogenic bacteria to antibiotics. Clinical usage of the currently available antibiotics has suffered from a number of problems, like the development of resistance to one or several antibiotics caused by pathogens capability of modifications and mutations that minimize or remove the contacts between the antibiotics and their target (Baylay et al., 2019).

A previous study by (Ahmed *et al.*,2021) showed MDR bacteria have also been shown to cause

significant clinical issues in outpatient departments; infections caused by MDR bacteria are associated with a higher mortality rate than infections caused by susceptible bacteria, and they impose significant economic costs. The increase in MDR bacteria worldwide is concerning because it indicates that we are gradually losing our therapeutic options for treating simple bacterial infections.

Beta-lactam antibiotics disrupt the bacterial cell wall synthesis process, specifically targeting peptidoglycan, which is the main component of the cell wall. Consequently, the bacterial resistance to this class of antibiotics arises from the production of Extended-spectrum β -lactamase (ESBL), which breaks down the B-lactam antibiotic ring. Additionally, resistance may arise from a lack of affinity between the antibiotics and their target, such as penicillin-binding proteins (PBP)(Kakoullis *et al.*,2021).

The aminoglycoside group of antibiotics works by binding to the small unit 30s of the bacterial ribosome, which blocks the bacteria's ability to synthesize proteins. This ultimately results in the death of the bacteria. The resistance of this group of antibiotics is caused by the bacteria's possession of efflux systems, antibiotic-modifying enzymes, and other mechanisms of resistance, such as target site modification and mutations. This group of antibiotics targets DNA gyrase and topoisomerase IV, but the resistance of bacteria to this group of antibiotics is caused by the emergence of a mutation in the target site, which is represented by the replication enzymes(Kong *et al.*, 2020).

Reference

- Zheng, S., Chen, H., Yang, H., Zheng, X., Fu, T., Qiu, X., & Wang, M. (2024). Differential enrichment of bacteria and phages in the vaginal microbiomes in PCOS and obesity: shotgun sequencing analysis. Frontiers in Microbiomes, 2, 1229723.
- Giampaolino, P., Foreste, V., Di Filippo, C., Gallo, A., Mercorio, A., Serafino, P., ... & Della Corte, L. (2021). Microbiome and PCOS: state-of-art and future aspects. International journal of molecular sciences, 22(4), 2048.
- 3. Hong, X., Qin, P., Huang, K., Ding, X., Ma, J., Xuan, Y., & Wang, B. (2020). Association between polycystic ovary syndrome and the vaginal microbiome: a case-control study. Clinical Endocrinology, 93(1), 52-60.
- 4. Chen, C., Song, X., Wei, W., Zhong, H., Dai, J., Lan, Z., ... & Jia, H. (2017). The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nature communications, 8(1), 875.

- 5. Smith, S. B., & Ravel, J. (2017). The vaginal microbiota, host defence and reproductive physiology. The Journal of physiology, 595(2), 451-463.
- 6. Moosa, Y., Kwon, D., De Oliveira, T., & Wong, E. B. (2020). Determinants of vaginal microbiota composition. Frontiers in cellular and infection microbiology, 10, 467.
- Elovitz, M. A., Gajer, P., Riis, V., Brown, A. G., Humphrys, M. S., Holm, J. B., & Ravel, J. (2019). Cervicovaginal microbiota and local immune response modulate the risk of spontaneous preterm delivery. Nature communications, 10(1), 1305.
- 9. Torcia, M. G. (2019). Interplay among vaginal microbiome, immune response and sexually transmitted viral infections. International journal of molecular sciences, 20(2), 266.
- Tu, Y., Zheng, G., Ding, G., Liu, X., & Huang, H. (2020). Comparative analysis of lower genital tract microbiome between PCOS and healthy women. Frontiers in physiology, 11, 563753.
- 11. Ahmed, D. T. (2021). Types of vaginal microbiomes in PCOS affected females. Indian Journal of Obstetrics and Gynecology Research, 8(4), 443-447.
- Al-Wandawy, A. H., Zwain, L. A., Omer, S. A., & Al-Wandawy, A. H. (2020). Investigation of vaginal bacteria in healthy and in women with genital infection. Ann. Trop. Med.
- 13. de Jong, H., Wösten, M. M., & Wennekes, T.(2022). Sweet impersonators: Molecular mimicry of host glycans by bacteria. Glycobiology, 32(1), 11-22.
- Nandhini, P., Kumar, P., Mickymaray, S., Alothaim, A. S., Somasundaram, J., & Rajan, M. (2022). Recent developments in Methicillin-Resistant Staphylococcus aureus (MRSA) treatment: a review. Antibiotics, 11(5), 606.
- 15. Daca, A., & Jarzembowski, T. (2024). From the Friend to the Foe—Enterococcus faecalis Diverse Impact on the Human Immune System. International Journal of Molecular Sciences, 25(4), 2422.
- 16. Lin, Y. C., Wu, C. Y., Huang, H. T., Lu, M. K., Hu, W. S., & Lee, K. T. (2021). Bacillus subtilis natto derivatives inhibit enterococcal biofilm formation via restructuring of the cell envelope. Frontiers in Microbiology, 12, 785351.

- Jennings, K. C., Johnson, K. E., Hayward, M. A., Kristich, C. J., & Salzman, N. H. (2024).
 CCR2-dependent CX3CR1+ colonic macrophages promote Enterococcus faecalis dissemination. Infection and Immunity, e00006-24
- 18. Ibraheem, R. S., khalawe Tektook, N., & Hussain, S. S. (2022). Levels of Interleukine-6 and Interleukin-18 in Iraqi Women with Polycystic Ovarian Syndrome Infected with Urinary Tract Infections. Journal of Pharmaceutical Negative Results, 641-644.
- 19. Al-Musawy, S. H., Al-Saimary, I. E., & Flaifil, M. S. (2018). Levels of cytokines profile in polycystic ovary syndrome. Medical Journal of Babylon, 15(2), 124-128.
- Naqid, I. A., Hussein, N. R., Balatay, A., Saeed, K. A., & Ahmed, H. A. (2020). Antibiotic susceptibility patterns of uropathogens isolated from female patients with urinary tract infection in Duhok province, Iraq. Jundishapur Journal of Health Sciences, 12(3).
- Vagarali, M. A., Karadesai, S. G., Patil, C. S., Metgud, S. C., & Mutnal, M. B. (2008). Haemagglutination and siderophore production as the urovirulence markers of uropathogenic Escherichia coli. Indian Journal of Medical Microbiology, 26(1), 68-70
- Subashchandrabose, S., & Mobley, H. L. (2017). Virulence and fitness determinants of uropathogenic Escherichia coli. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, 235-261.
- 23. Mendes, G., Santos, M. L., Ramalho, J. F., Duarte, A., & Caneiras, C. (2023). Virulence factors in carbapenem-resistant hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology, 14, 1325077.
- 24. Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews, 11(4), 589-603.
- 25. Geng, X., Yang, Y. J., Li, Z., Ge, W. B., Xu, X., Liu, X. W., & Li, J. Y. (2024). Fingolimod Inhibits Exopolysaccharide Production and Regulates Relevant Genes to Eliminate the Biofilm of K. pneumoniae. International Journal of Molecular Sciences, 25(3), 1397
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae— Clinical and Molecular Perspectives. J. Intern. Med. 2020, 287, 283–300.
- 27. Yang, Z.; Zhou, R.; Chen, Y.; Zhang, X.; Liu, L.; Luo, M.; Chen, J.; Chen, K.; Zeng, T.; Liu, B.; et al. Clinical and Molecular Characteristics and Antibacterial Strategies of

- Klebsiella pneumoniae in Pyogenic Infection. Microbiol. Spectr. 2023, 11, e0064023.
- Zhu, Z.; Zhang, B.; Wang, Y.; Jing, S.; Ning, W.; Liu, C.; Chen, C. A Wide Clinical Spectrum of Pulmonary Affection in Subjects with Community-Acquired Klebsiella pneumoniae Liver Abscess (CA-KPLA). J. Infect. Chemother. 2023, 29, 48–54.
- Al-Busaidi, B., Al-Muzahmi, M., Al-Shabibi, Z., Rizvi, M., Al-Rashdi, A., Al-Jardani, A., ... & Al-Jabri, Z. (2024). Hypervirulent Capsular Serotypes K1 and K2 Klebsiella pneumoniae Strains Demonstrate Resistance to Serum Bactericidal Activity and Galleria mellonella Lethality. International Journal of Molecular Sciences, 25(3), 1944
- 30. Janda, J. M., & Abbott, S. L. (2021). The changing face of the family Enterobacteriaceae (Order: "Enterobacterales"): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clinical microbiology reviews, 34(2), 10-1128.
- 31. Gong, Z., Shi, X., Bai, F., He, X., Zhang, H., Li, Y., ... & Cao, H. (2019). Characterization of a novel diarrheagenic strain of Proteus mirabilis associated with food poisoning in China. Frontiers in microbiology, 10, 2810.
- 32. Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae—Clinical and Molecular Perspectives. J. Intern. Med. 2020, 287, 283–300.
- 33. Tropea, A. (2022). Microbial contamination and public health: an overview. International Journal of Environmental Research and Public Health, 19(12), 7441.
- 34. Lapage, S. P., Hill, L., & Reeve, J. D. (1968). Pseudomonas stutzeri in pathological material. Journal of Medical Microbiology, 1(2), 195-202.
- Tabassum, F., Jyoti, C., Sinha, H. H., Dhar, K., & Akhtar, M. S. (2021). Impact of polycystic ovary syndrome on quality of life of women in correlation to age, basal metabolic index, education and marriage. PloS one, 16(3), e0247486
- 36. Bisharat, N., Gorlachev, T., & Keness, Y. (2012). 10-Years hospital experience in Pseudomonas stutzeri and literature. Open Infect Dis J, 6(1), 21-4.
- 37. Kose, M. E. H. M. E. T., Ozturk, M., Kuyucu, T., Gunes, T. A. M. E. R., Akcakus, M., & Sumerkan, B. (2004). Community-acquired pneumonia and empyema caused by Pseudomonas stutzeri: a case report. Turkish Journal of Pediatrics, 46(2), 177-178.
- 38. Jobira, B., Frank, D. N., Pyle, L., Silveira, L. J., Kelsey, M. M., Garcia-Reyes, Y., ... & Cree-Green, M. (2020). Obese adolescents

- with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. *The Journal of Clinical Endocrinology & Metabolism*, 105(6), e2134-e2144.
- 39. Duan, L., An, X., Zhang, Y., Jin, D., Zhao, S., Zhou, R., ... & Lian, F. (2021). Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. *Biomedicine* & *Pharmacotherapy*, 142, 112094.
- 40. Sun, Y., Gao, S., Ye, C., & Zhao, W. (2023). Gut microbiota dysbiosis in polycystic ovary syndrome: Mechanisms of progression and clinical applications. *Frontiers in cellular and infection microbiology*, *13*, 1142041.
- 41. Wright, M. L. (2021). Exploring the vaginal bacteriophage frontier. BJOG: An International Journal of Obstetrics & Gynaecology, 128(6).
- 42. Weber, S., Hogardt, M., Reinheimer, C., Wichelhaus, T. A., Kempf, V. A., Kessel, J., ... & Scheich, S. (2019). Bloodstream infections with vancomycin-resistant enterococci are associated with a decreased survival in patients with hematological diseases. *Annals of Hematology*, 98, 763-773.
- 43. Schaffer, J. N., & Pearson, M. M. (2017). Proteus mirabilis and urinary tract infections. *Urinary tract infections:* Molecular pathogenesis and clinical management, 383-433.
- 44. Livermore, D. M., & Pearson, A. (2007). Antibiotic resistance: location, location, location. *Clinical Microbiology and Infection*, 13, 7-16.
- Magliano, E., Grazioli, V., Deflorio, L., Leuci, A. I., Mattina, R., Romano, P., & Cocuzza, C. E. (2012). Gender and agedependent etiology of community-acquired urinary tract infections. *The scientific world journal*, 2012.
- 46. Ahmed, Z. F., & Al-Daraghi, W. A. H. (2022). Molecular detection of medA virulence gene in Staphylococcus aureus isolated from Iraqi patients. *Iraqi journal of biotechnology*, 21(1).
- 47. Al-Jumaily, S. F. S., Al-Taai, H. R. R., & Al-Dulaimi, A. A. (2019). Study of Phenotyping and Genotyping Characterization of Methicillin Resistant Staphylococcus Aureus Isolates. *Indian Journal of Forensic Medicine & Toxicology*, 13(4), 875-880.
- 48. Kareem, S. M., Al-Jubori, S. S., & Ali, M. R. (2015). Prevalence of erm genes among methicillin resistant Staphylococcus aureus MRSA Iraqi isolates. *Int J Curr Microbiol Appl Sci*, 4(5), 575-585.

- Jia, K., Fang, T., Wang, X., Liu, Y., Sun, W., Wang, Y., ... & Dong, Q. (2020). Antibiotic resistance patterns of Staphylococcus aureus isolates from retail foods in mainland China: A meta-analysis. Foodborne Pathogens and Disease, 17(5), 296-307.
- Akbar, R., Naeem, R. A. M., Shafique, M., Sohail, M., & Naz, S. (2017). Trends in antimicrobial susceptibility of bacterial isolates from hospitalized patients with urinary tract infection. *Pakistan Journal of Medical and Biological Science*, 1(2), 21-27.
- 51. Toner, L., Papa, N., Perera, M., Aliyu, S. H., Dev, H., Lawrentschuk, N., & Al-Hayek, S. (2017). Staphylococcus aureus urinary tract bacteriuria: single-institutional antibiotic susceptibility trends over a decade. *Bladder*, 4(3), e30-e30.
- 52. He, K., Hu, Y., Shi, J. C., Zhu, Y. Q., & Mao, X. M. (2018). Prevalence, risk factors and microorganisms of urinary tract infections in patients with type 2 diabetes mellitus: a retrospective study in China. *Therapeutics and clinical risk management*, 403-408.
- Ahmed, O. N., Mahdi, N. B., & Altaii, H. A. (2021). Molecular detection of VRSA and MRSA strains in some infections in nineveh hospitals, Iraq. *Biochemical & Cellular Archives*, 21(1).
- 54. Oliveira-Tintino, C. D. D. M., Tintino, S. R., Justino de Araújo, A. C., dos Santos Barbosa, C. R., Ramos Freitas, P., Araújo Neto, J. B. D., ... & Coutinho, H. D. M. (2023). Efflux pump (QacA, QacB, and QacC) and β-lactamase inhibitors? An evaluation of 1, 8-naphthyridines against Staphylococcus aureus strains. *Molecules*, 28(4), 1819.
- 55. Asante, J., Abia, A. L., Anokwah, D., Hetsa, B. A., Fatoba, D. O., Bester, L. A., & Amoako, D. G. (2022). Phenotypic and Genomic Insights into Biofilm Formation in Antibiotic-Resistant Clinical Coagulase-Negative Staphylococcus Species from South Africa. Genes, 14(1), 104.
- 56. França, A. (2023). The role of coagulasenegative staphylococci biofilms on late-onset sepsis: current challenges and emerging diagnostics and therapies. *Antibiotics*, 12(3), 554
- 57. Ali, Z., Dishisha, T., El-Gendy, A. O., & Azmy, A. F. (2023). Isolation and phenotypic characterization of bacteriophage SA14 with lytic-and anti-biofilm activity against multidrug-resistant Enterococcus faecalis. Beni-Suef University Journal of Basic and Applied Sciences, 12(1), 21.
- 58. Mohammed, A. B., & Anwar, K. A. (2022). Phenotypic and genotypic detection of extended spectrum beta lactamase enzyme in

- Klebsiella pneumoniae. *PloS one*, *17*(9), e0267221.
- 59. Seman, A., Mihret, A., Sebre, S., Awoke, T., Yeshitela, B., Yitayew, B., ... & Abebe, T. (2022). Prevalence and molecular characterization of extended spectrum β-Lactamase and carbapenemase-producing Enterobacteriaceae isolates from bloodstream infection suspected patients in Addis Ababa, Ethiopia. *Infection and Drug Resistance*, 1367-1382.
- 60. Zhang, J., Bao, Y., Zhou, X., & Zheng, L. (2019). Polycystic ovary syndrome and mitochondrial dysfunction. *Reproductive Biology and Endocrinology*, 17(1), 67.
- 61. Younus, D., & Essa, M. A. (2022). Detection of Bacteria Causing Skin Infections in Mosul City and Studying its Resistance to Antibiotics. *Rafidain Journal of Science*, 31(4), 20-31.
- 62. Baylay, A. J., Piddock, L. J., & Webber, M. A. (2019). Molecular mechanisms of antibiotic resistance–Part I. Bacterial resistance to antibiotics—from molecules to man, 1-26.
- 63. Kakoullis, L., Papachristodoulou, E., Chra, P., & Panos, G. (2021). Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. *Antibiotics*, 10(4), 415.
- 64. Kong, J., Wu, Z. X., Wei, L., Chen, Z. S., & Yoganathan, S. (2020). Exploration of antibiotic activity of aminoglycosides, in particular ribostamycin alone and in combination with ethylenediaminetetraacetic acid against pathogenic bacteria. *Frontiers in Microbiology*, 11, 1718

RESEARCH

O&G Forum 2024; 34 – 3s: 1976-1989