# PINWORM INFECTION IN NINEVEH GOVERNORATE: ITS RELATIONSHIP TO SOME VITAL VARIABLES- ACCOMPANYING **SYMPTOMS**

Faten Khair EL DIN Fathi<sup>1</sup>, Intisar Ghanim Abdulwahhab<sup>2</sup>

<sup>1,2</sup>Tikrit University, College of Education for Women, Biology Department faten.fathy23@st.tu.edu.iq, dr.en79@tu.edu.iq

#### **Abstract**

The study deals with determining the incidence of the disease and its relationship to some vital variables in infected people, as well as the incidence of some symptoms (anal itching - urinary incontinence - abdominal pain). 150 samples of varying ages (3-68) years were collected for the period from September 2023 to February 2024. Samples were taken from the Mosul district, the Hatra district, and the Qayyarah district, as well as the Al-Jadaa, Hassan Sham, and Al-Khazir camps, after obtaining official approvals and the approval of the children's guardians, filling out the questionnaire form, and from people who complained of some symptoms of infection. The results of microscopic examination showed that the infection rate was 38%. Pinworm disease did not have a significant relationship (P>0.05) with some variables (gender, number of family members, educational level of the parents). The infection rate among females (40.96%) is higher than that of males, and the infection rate increases with the number of family members. The highest rate of parasite prevalence was for the lowest educational level, category (0-2), at 40.49%. This percentage decreased as the educational level of the parents increased. Regarding the accompanying symptoms, the results showed that the highest percentage was for urinary incontinence, followed by anal itching and abdominal pain (54.38%, 47.36%, 28.07%) and that there were significant differences in the incidence of urinary incontinence and anal itching according to age (P< 0.05). Keywords: pinworm, urinary incontinence, symptoms, vital variables

#### Introduction

health centers, schools, orphanages, and human acquisition of well as to the female reproductive system. this parasite is due to direct contact. With an infected person or as a result of eating contaminated food and water, but it rarely Material and Method occurs through parasite eggs carried in the air [3]. The life cycle Sample Collection of pinworms in humans is usually restricted to the The study was conducted in Nineveh Governorate, which is gastrointestinal tract [4]. The female usually lives for two located in northwestern Iraq. 150 stool samples were collected months, but self-infection causes the life cycle to continue [5]. from people for the period from September 2023 to February Previous studies considered that (hand hygiene, crowded 2024 from different areas of the governorate as well as from environment, and economic and social status are factors that refugee camps located in the governorate, such as Al-Jada'a play a role in the severity of the disease [6, 7], in addition to the camp, Hassan Sham camp, and Al-Khazir, after obtaining educational level of the parents, and that the prevalence of official approvals. The ages of the participants varied between infection for children with educated parents is lower than for 3-68 years of both sexes (males = 67, females = 83). Information children with educated parents. They come from parents with a related to our study was taken, such as age, number of family low cultural level [8], The clinical symptoms accompanying the members, education level of parents, and symptoms that may be presence of the parasite and its migration at night to the area associated with the disease, after obtaining consent from around the anus to lay eggs are accompanied by irritation of the Parents. Sterile, clean plastic containers with a tight lid were area, anal itching, and a feeling of loss of appetite and distress, used for the purpose of collection and to emphasize the necessity

and these symptoms have not changed to this day[9]. Minor Parasitic nematodes cause chronic infections for millions of symptoms may appear in people with pinworm disease, or people around the world. Economically poor communities are symptoms may not appear in half of those infected [10]. Hussien usually vulnerable to these infections, which are called (2015) mentioned that the infection is accompanied by nocturnal neglected tropical diseases[1]. Its infection rate may reach about enuresis in children [11]. This phenomenon affects one billion people from all over the world and at all economic approximately 15-20% of children over five years of age. There and social levels[2]. It is a major factor causing enterobiasis and is a positive relationship in the majority of children between is a common global parasite among children, especially in infection with pinworms and the phenomenon of nocturnal temperate and tropical regions. It is expected that the annual enuresis [12, 13] also explained that infection Pinworms are infection reaches 200 million people. This worm is usually generally asymptomatic except for anal itching, and there are found in crowded places and institutions such as hospitals, occasional cases in which the worm migrates to the appendix as

showering in order to obtain pinworm eggs. The samples members. As shown in the Table (2), There are no significant collected were examined within a period not exceeding two differences in infection according to the number of family hours, with the naked eye to search for adult worms and members at the probability level 0.05. microscopically using a direct wet swab to detect pinworm eggs. Table (2) The relationship between the number of family Statistical analysis: Data from the questionnaire were analyzed members and pinworm infections using the SPSSS V.26 program, and a probability value of P  $\leq$ 0.05 was considered Statistically significant. Differences in the prevalence of parasitic infection were determined on the basis of some variables such as sex, level of education of the parents and number of family members using the Chi test. The incidence of some symptoms such as anal itching, abdominal pain, and urinary incontinence among those infected was also determined.

#### Results

# Microscopic examination results

The results of the study showed that the number of people infected with this parasite reached 57 out of 150 stool samples, with an infection rate It reached 38% of both genders, as shown in the figure 1.

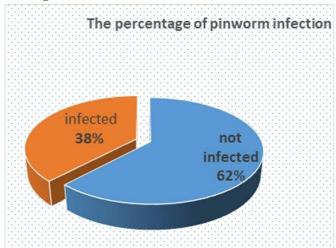



Figure (1): Percentage of pinworm infection

# The relationship of infection to some vital variables: Distribution of pinworm infection by sex

The results of the study, as shown in Table (1), showed that the infection rate in females was 40.96%, which was higher than that in males, 34.32%, and that there were no significant accompanying symptoms at the probability level of 0.05. differences at the probability level ( $P \ge 0.05$ ).

Table (1): The relationship between the sex of the infected to accompanying disease symptoms person and pinworm infection

| Sex         | The number                | Infected | Percentage   |
|-------------|---------------------------|----------|--------------|
|             | examined                  | samples  | of infection |
| Male        | 67                        | 23       | 34.32%       |
| Female      | 83                        | 34       | 40.96%       |
| Total       | 150                       | 57       | 38%          |
| Statistical | Chi2 = 0.693, P = 0.405   |          |              |
| analysis    | P > 0.05, no significance |          |              |

# Distribution of pinworm infection according to the number of family members:

The results of the current study recorded the highest percentage The relationship between pinworm infection and urinary of pinworm infection in a family consisting of 9-10 members, incontinence, according to age and gender where the percentage was 44.44%, and the lowest percentage in The results showed significant differences in the phenomenon

of defecation in the morning before cleaning the exit area or infection rate increases directly with the number of family

| 1 0         |                              | T C . 1  | ъ .          |
|-------------|------------------------------|----------|--------------|
| number of   | The number                   | Infected | Percentage   |
| family      | examined                     | samples  | of infection |
| members     |                              |          |              |
| 4 - 1       | 31                           | 10       | 32.25%       |
| 8 - 5       | 101                          | 39       | 38.61%       |
| 10 – 9      | 18                           | 8        | 44.44%       |
| the total   | 150                          | 57       | 38%          |
| statistical | Chi2 = $0.767$ , P = $0.681$ |          |              |
| analysis    | P > 0.05, no significance    |          |              |

# Distribution of pinworm infection according to educational level of parents

It was found that the highest prevalence of the parasite was for the lowest educational level (0-2) at a rate of 40.49%, and this percentage decreased as the academic level of the parents increased. There were no significant differences at the 0.05 probability level.

Table (3) Pinworm prevalence rate according to the educational level of the parents

| educational level of the parents |                              |          |              |  |
|----------------------------------|------------------------------|----------|--------------|--|
| Parents'                         | Total                        | Infected | Percentage   |  |
| education level                  | number                       | samples  | of infection |  |
| 2-0                              | 121                          | 49       | 40.49%       |  |
| 5-3                              | 25                           | 7        | 28%          |  |
| 8-6                              | 4                            | 1        | 25%          |  |
| the total                        | 150                          | 57       | 38%          |  |
| statistical                      | Chi2 = $1.668$ , P = $0.434$ |          |              |  |
| analysis                         | P > 0.05, No Significance    |          |              |  |

## Distribution of the percentage of infection according to accompanying symptoms

The results, as shown in Table (4), showed that the highest percentage of symptoms that accompany pinworm infection is urinary incontinence, at a rate of 54.38%, followed by anal itching, at 47.36%, and then abdominal pain, at a rate of 16%. The results of the statistical analysis showed that there were no significant differences. Significant significance for the

Table (4): Total percentage of pinworm infection according

| Symptoms     | The number                | Number of       | Percentage   |
|--------------|---------------------------|-----------------|--------------|
| associated   | infected                  | infected people | of infection |
| with the     |                           | associated with |              |
| disease      |                           | the infection   |              |
| Incontinence | 57                        | 31              | 54.38%       |
| Anal itching |                           | 27              | 47.36%       |
| Abdominal    |                           | 16              | 28.07%       |
| pain         |                           | 10              | 28.0770      |
| Statistical  | Chi2 = 4.795, P = 0.091   |                 |              |
| analysis     | P > 0.05, No Significance |                 |              |

a family consisting of 1-4 members. Thus, we notice that the of urinary incontinence according to age (Table 5). The highest

incidence rate was for the age group (1-6), with a rate of 83.33%. *al.*,2020[18]. The infection rate for males was 4.38%, which was Then the phenomenon decreased with advancing age and higher than the rate for females, 3.37%. We notice a similarity noticeably for ages over 12 years until it reached 0% for ages in the infection rate for males and females. This may be due to over 19.

Table (5): The total percentage of pinworm infection and its relationship to urinary incontinence, distributed by age

| Age group   | Number                 | Infected | Percentage of |
|-------------|------------------------|----------|---------------|
| (years)     | examined               | samples  | infection     |
| 6 - 1       | 12                     | 10       | 83.33%        |
| 12 - 7      | 33                     | 20       | 60.60%        |
| 18 - 13     | 6                      | 1        | 16.66%        |
| >19         | 6                      | 0        | 0%            |
| Statistical | Chi2 =15.163, P =0.002 |          |               |
| analysis    | P<0.05, Significant    |          |               |

As shown in Table (6), the results indicate that the phenomenon of urinary incontinence in males is 60.86% higher than in females (50%) and that there are no significant differences for this phenomenon according to gender at the 0.05 probability level.

**Table (6):** The total percentage of pinworm infection and its relationship to urinary incontinence, distributed by gender

| Sex         | The number examined        | Infected samples | Percentage of infection |
|-------------|----------------------------|------------------|-------------------------|
| Male        | 23                         | 14               | 60.86%                  |
| Female      | 34                         | 17               | 50%                     |
| Total       | 57                         | 31               | 54.38%                  |
| Statistical | $Chi^2 = 0.653, P = 0.419$ |                  |                         |
| analysis    | P > 0.05, No Significance  |                  |                         |

### Discussion

Microscopic examination is considered a primary method used in diagnosing pinworm disease. Although it is widely used in most laboratories, it is considered less sensitive compared to other methods of diagnosis, such as the polymerase chain reaction (PCR) method. In our current study, according to the microscopic examination of samples, the infection rate reached 38% of the examined samples, and the result is considered close. As [14] recorded, the parasite infection rate was 37.12%, similar to what was recorded by [12]. The total infection rate was 37.89%. On the other hand, it is less than the results of previous studies, such as those conducted by [15,24], in which an infection rate of 81.5% was recorded in Wasit Governorate. There is a convergence and difference in the overall rate of pinworm infection. This may be attributed to the difference in places. The environmental conditions from which the samples were collected, in addition to the significant difference in health, economic, and cultural conditions The difference in the method used in the examination also plays a significant role in the difference in the overall rate of infection. Given the small number of eggs the worm sheds, the microscopic examination method may not accurately reveal the presence of these eggs. The other reason may be that the worm lays a small number of eggs in the anus. Therefore, there are few eggs in the stool. Regarding infection by gender, the results agree with [16] in their study conducted in Diwaniyah, with a rate of 48.1% for females and 39.8% for males, as well as with the results of [17,25] in the Kurdistan region, expressly. In Erbil Governorate, the rate for females was 28.85%, which was higher than that for males, 25.31%. However, it differed with Khazaal et

higher than the rate for females, 3.37%. We notice a similarity in the infection rate for males and females. This may be due to the fact that the sexes live together under the same conditions, especially in the camps, where their cultural and economic level is similar and their opportunities are fairly equal in obtaining food contaminated with the parasite. The results showed a direct relationship between the infection and the number of family members. It agreed with the results of [5]The percentage reached 63.15% in a family of 10-13. [5] confirmed in their study that children who had positive results for the infection had a more significant number of siblings compared to those whose results were negative for disease; it becomes clear from the results that the number of family members plays a vital role in the spread of pinworm due to the transmission of infection between family members, especially families who live in camps where all family members are in one room in which there is no element of health and personal hygiene available. In addition to eating food from one plate and with their hands, which may be contaminated with pinworm eggs. The cultural level may play a role in limiting the spread of the parasite. This agreed with what [8,26] recorded in his study, in which he confirmed that the spread of infection in children of educated parents is lower than in children of parents with a low cultural level. This may be because educated people have awareness. More incredible culture of health and personal hygiene and realize its importance. Regarding the symptoms associated with the infection, it was found that the highest percentage was for urinary incontinence, which agrees with what was recorded by [16], where the phenomenon rate was 61.5%. This was also supported by [19,20] in their study that they conducted in Baghdad on an orphanage, with a percentage of 58.82. In our research, we found significant differences in this phenomenon according to age. The process of involuntary urination in children has many physiological reasons related to the child's nature, such as deep sleep, difficulty waking up, or lack of capacity in his bladder compared to adults. Psychological and emotional factors also affect this phenomenon, such as family disintegration and the child's exposure to cruelty and violence, in addition to significant differences in anal itching according to age as well [21,22,23].

## Conclusion

Pinworm disease is considered a common intestinal disease, and microscopic examination is the most commonly used to detect the parasite, as it gives fairly similar results. Many factors play a role in increasing the infection, especially the environment in which the person lives, such as the educational level of the parents and the number of family members. The infection may be accompanied by urinary incontinence and anal itching. Abdominal pain, but there are cases found without symptoms.

### References

- 1. Swart Z, Duong TA, Wingfield BD, Postma A, Slippers B. The relevance of studying insect—nematode interactions for human disease. Pathogens and Global Health. 2022;116(3):140-5.
- 2. Park J-H, Han E-T, Kim W-H, Shin E-H, Guk S-M, Kim J-L, et al. A survey of Enterobius vermicularis infection among children on western and southern coastal islands of the

Republic of Korea. The Korean Journal of Parasitology. 2005;43(4):129.

- 3. Kim BJ, Lee BY, Chung HK, Lee YS, Lee KH, Chung HJ, et al. Egg positive rate of Enterobius vermicularis of primary school children in Geoje island. The Korean Journal of Parasitology. 2003;41(1):75.
- 4. De Kostha YS, Pathirana SL, Handunnetti SM, Gunawardena S. Characterization of antigens of Enterobius vermicularis (pinworm) eggs. Scientific Reports. 2022;12(1):14414.
- 5. Sastry AS, Bhat S. Essentials of medical parasitology: Jp Medical Ltd; 2018.
- 6. Chen K-Y, Yen C-M, Hwang K-P, Wang L-C. Enterobius vermicularis infection and its risk factors among pre-school children in Taipei, Taiwan. Journal of Microbiology, Immunology and Infection. 2018;51(4):559-64.
- 7. Hamed, O. M., Al-Taii, R. A., & Jankeer, M. H. (2021). Biochemical and Genetic Study in Blood of  $\beta$ -Thalassaemia Children in Mosul City, Iraq. Iraqi Journal of Science, 2501-2508.16-Schermelleh,
- 8. Laoraksawong P, Pansuwan P, Krongchon S, Pongpanitanont P, Janwan P. Prevalence of Enterobius vermicularis infections and associated risk factors among schoolchildren in Nakhon Si Thammarat, Thailand. Tropical Medicine and Health. 2020;48:1-7.
- 9. Hailegebriel T. Prevalence of intestinal parasitic infections and associated risk factors among students at Dona Berber primary school, Bahir Dar, Ethiopia. BMC infectious diseases. 2017:17:1-8.
- 10. Stoll NR. This wormy world. The Journal of parasitology. 1947;33(1):1-18.
- 11. Hamed, Owayes. M. (2022). Analysis of Common Mutation of P53 Gene in Male with Lung Cancer in Mosul City. Bionatura, 7(3), 52.
- 12. Wendt S, Trawinski H, Schubert S, Rodloff AC, Mössner J, Lübbert C. The diagnosis and treatment of pinworm infection. Deutsches Ärzteblatt International. 2019;116(13):213.
- 13. Al-Hassani, O. M. H. (2020, November). Role of MTHFR C667T and MTRR A66G genes polymorphism with thyroid disorders. In Journal of Physics: Conference Series (Vol. 1660, No. 1, p. 012007). IOP Publishing.
- 14. Hussein ZA. Prevalence Enterobius vermicularis infection in children and relationship with nocturnal enuresis in Najaf Province. journal of kerbala university. 2015;13(3).
- 15. Al-Shadood HA. Study the association between Enterobius vermicularis infection and enuresis among children

- in Al-Najaf city. AL-Qadisiyah Journal of Veterinary Medicine Sciences. 2015;14(1):104-8.
- 16. Al-Hassani, O. M. H. (2020, March). Some biochemical markers and methylene tetrahydrofolate reductase gene polymorphism that association with different type of smoking. In AIP Conference Proceedings (Vol. 2213, No. 1). AIP Publishing.
- 17. Al-Shouli ST, Barry M, Binkhamis K, AlHogail N, Alafaleq NO, Dufailu OA, et al., editors. Fatal case of a child harboring Enterobius vermicularis. Healthcare; 2023: MDPI.
- 18. Ramadan, Z. J., Hamed, O. M., & Khalaf, I. H. (2020). Detection of genetic variation for some genes that related with recurrent spontaneous abortion in Nineveh province. Biochemical & Cellular Archives, 20(2).
- 19. AL-Quraishi MA. The Relationship between the Infestation with E. Vermicularis and Eneuresis In Children. Medical Journal of Babylon. 2006;3(1-2).
- 20. AL-Jaf E, Rahi A, Tofah J. Compartive study between molecular and classical methods for defection Enterobius vermicularis in Wasit Province Master of Science in Biology. Zoology. 2018.
- 21. Al-Hassani, O. M. H. (2020, March). Some biochemical markers and methylene tetrahydrofolate reductase gene polymorphism that association with different type of smoking. In AIP Conference Proceedings (Vol. 2213, No. 1). AIP Publishing.
- 22. Al-Ibrahimi MH, Al-Waaly AB. The prevalence of pinworm, incontinence and appendicitis in children in Diwaniyah Governorate, Iraq. Journal of Annals of Tropical Medicine and Public Health. 2019;23(1).
- 23. Al-Daoody AAK, Al-Bazzaz ENH. Impact of Enterobius vermicularis infection on biochemical parameters in the blood of children in Erbil Province, Iraq. BMC infectious diseases. 2020;20:1-6.
- 24. Hamed, Owayes. M. (2022). Analysis of Common Mutation of P53 Gene in Male with Lung Cancer in Mosul City. Bionatura, 7(3), 52.
- 25. KHAZAAL R, AL-HADRAAWY SK, HUSSEIN KR. Prevalence of Enterobius vermicularis among preschool age and school age children in Thi-Qar province southern Iraq. International Journal of Pharmaceutical Research (09752366). 2020.
- 26. Al-Qadhi BN, Al-Warid HS, Al-Qadhi MN. Enterobiasis and its relationship with enuresis among one of orphanage care children in Baghdad-Iraq. Iraqi journal of science. 2011;52(3):394-9.