CORRELATION BETWEEN VALUES OF BILIRUBIN MEASUREMENT BY TRANSCUTANEOUS AND SERUM LEVELS IN TERM NEONATES Dr. Tahera Tabassum¹, Dr. Hepsiba Katuri², Dr. G. Santosh Kumar Reddy³, *Dr. Naila Mazher⁴, Dr. Shafa Tayyaba⁵ - 1,5Post Graduate, Department of Pediatrics, Apollo Institute of Medical Sciences and Research, JubleeHills, Hyderabad, Telangana. - ^{2,3,4}Assistant Professor, Department of Pediatrics, Apollo Institute of Medical Sciences and Research, JubleeHills, Hyderabad, Telangana. # **Abstract** Background: One of the most prevalent reasons for hospitalization within the first week following birth is neonatal jaundice. Neonatal hyperbilirubinemia is a very prevalent illness, affecting 25 to 50% of all newborns and 80% of preterm babies. In India, around 5% of newborns have pathological jaundice1. **OBJECTIVES:** - 1. To estimate bilirubin levels in neonates using a non-invasive method. - 2. To assess the difference between Transcutaneous Bilirubin and Total Serum Bilirubin paired values. MATERIAL & METHODS: Study Design: Hospital-based, cross sectional study. Study area: The study was conducted in the Department of paediatrics, Apollo Institute of Medical Sciences and Research, JubleeHills, Hyderabad, Telangana. Sample size: Study consisted a total of 192 subjects. Sampling Technique: Simple Random technique. Study tools and Data collection procedure: An informed written consent was obtained from all the parents of the newborns who were enrolled in the study. From all the newborns, information such as demographic data, day of life, bilirubin values were recorded. Neonates who seem icteric visually were examined by a pediatric resident. If they had the inclusion criteria for the study, their bilirubin levels were measured three times on the sternum for avoiding any bias induced by the bilirubinometer. Results: The TcB – TSB difference for the paired measurements when the TSB was <15 mg/dL was 1.03 to 1.83 mg/dL. The difference became progressively less positive as the TSB level increased, with TcB - TSB difference of - 5 to 3 mg/dL for the paired measurements when the TSB level was ≥15 mg/dL. CONCLUSION: The findings in this study suggest that TcB measurements can be used effectively to screen newborn infants for significant hyperbilirubinemia, with TSB measurements reserved for those newborns whose TcB level is above a certain cutoff value (15 mg/dl). We recommend that transcutaneous bilirubinometer can be effectively used as a screening tool to predict bilirubin levels in term babies and can be used to dictate management Keywords: neonatal jaundice, Total serum bilirubin, bilirubinometer ### Introduction around 5% of newborns have pathological jaundice¹. rate, and survivors frequently experience sequelae such as scoring1. exchange blood transfusion. have shown that visual assessment of jaundice is an unreliable therapy to be delayed. In recent years, the transcutaneous and risky indicator of severe hyperbilirubinemia⁴. In most One of the most prevalent reasons for hospitalization within the situations, jaundice is minor and temporary; nonetheless, in first week following birth is neonatal jaundice. Neonatal some children, it is one of the most prevalent reasons for hyperbilirubinemia is a very prevalent illness, affecting 25 to readmission to the hospital within the first week of life. Jaundice 50% of all newborns and 80% of preterm babies. In India, affects 60-70 percent of term neonates and around 80% of preterm infants. Serum bilirubin levels more than 15mg/dl are Bilirubin-induced neurologic dysfunction (BIND) can arise in observed in 3% of normal term neonates 4. Various prethese infants due to severe hyperbilirubinemia1. The young discharge screening procedures were implemented to identify brain is sensitive to toxicity from unconjugated bilirubin, which patients at risk of severe hyperbilirubinemia. They include total results in kernicterus². Kernicterus is linked with a high death serum bilirubin, transcutaneous bilirubin, and clinical risk factor athetoid cerebral palsy, high-frequency hearing loss, and As a result, serum bilirubin levels must frequently be measured intellectual disability³. Severe neonatal hyperbilirubinemia and in the lab. Total serum bilirubin (TSB) measurement by a its complications can be avoided with proper serum bilirubin biochemical laboratory is still considered the gold standard for monitoring and prompt treatment with phototherapy or an determining bilirubin levels, but it is invasive, requiring needle pricks that pose the risk of infection and cause discomfort and Visual estimations of jaundice and serum bilirubin levels might stress to neonates ⁵. The time it takes to receive bilirubin test be deceiving. Recent investigations and safety data evaluations results may cause the start of neonatal hyperbilirubinemia differ between studies⁶. bilirubinometer measures bilirubin's spectral reflectance. This is Statistical analysis: mg/dl, allowing straightforward interpretation. response, allowing for the beginning of therapy and lowering determination (R2). the burden on health care providers. This study used a transcutaneous bilirubinometer to assess bilirubin levels in the OBSERVATIONS & RESULTS: midsternum (TCBS), which is one of the approved sites. The Table 1: Age wise distribution of babies (n=192) correlation between serum bilirubin (TSB) and jaundice estimated by this instrument could aid in the early detection of neonatal hyperbilirubinemia, allowing for timely intervention and a better outcome in newborns with hyperbilirubinemia, as well as the prevention of complications involving the central nervous system. ### **OBJECTIVES:** - 1. To estimate bilirubin levels in neonates using a non-invasive method. - 2. To assess the difference between Transcutaneous Bilirubin and Total Serum Bilirubin paired values. - 3. To assess the demographic distribution age wise, gender wise, mothers and babies blood group distribution, type of feeding among the study population. - 4. To correlate the values of bilirubin measurements by transcutaneous and total serum levels in term neonates. # **MATERIAL & METHODS:** Study Design: Hospital-based, cross sectional study. Study area: The study was conducted in the Department of paediatrics, Apollo Institute of Medical Sciences and Research, Jublee Hills, Hyderabad, Telangana. Sample size: Study consisted a total of 192 subjects. Sampling Technique: Simple Random technique. **Inclusion Criteria**: All full term neonates admitted in postnatal ward, weighing >2500gm with clinical jaundice. # **Exclusion criteria:** - 1. Newborns with birth asphyxia. - 2. Newborns with major congenital malformations - 3. Newborns who have received phototherapy or blood Study tools and Data collection procedure: An informed Table 4. Total serum bilirubin distribution of babies (n=192) written consent was obtained from all the parents of the newborns who were enrolled in the study. From all the newborns, information such as demographic data, day of life, bilirubin values were recorded. Neonates who seem icteric visually were examined by a pediatric resident. If they had the bilirubinometer, which detects bilirubin levels by photometry, inclusion criteria for the study, their bilirubin levels were has been utilized as an alternative to estimating bilirubin levels. measured three times on the sternum for avoiding any bias The first electronic transcutaneous bilirubinometry (TcB) induced by the bilirubinometer. BM-100C model by DAVID equipment proved beneficial as a screening approach for brand transcutaneous bilirubinometer was used for this study. identifying neonates who need serum bilirubin testing. The mean levels were recorded and blood samples were Noninvasive transcutaneous bilirubin (TcB) monitoring is an obtained within 30 minutes and sent to the laboratory for appealing alternative for newborns, however, perspectives on its determining TSB. Measurements obtained from the two The transcutaneous methods were then compared. done based on the difference in optical densities for light in the Data entry and analysis were performed using the SPSS blue (450 nm) and green (550 nm) wavelengths. Pigments on software version 24. Demographic data among the neonates the skin, such as melanin and haemoglobin, should be reduced were grouped and analysed using descriptive analysis. Normally due to bilirubin accumulation in the deeper subcutaneous tissue. distributed numerical data were presented as mean and standard The gadget provides a direct TcB measurement in mmol/l or deviation (SD), while categorical data were presented as frequency (n) and percentage (%). Pearson correlation between A transcutaneous bilirubinometer is a portable, painless, and study variables is performed to find the degree of relationship. non-invasive tool. The bilirubin level is measured by putting a The direction and strength of linear relationship were shown by probe to the infant forehead or sternum. It provides a rapid the correlation coefficient (r) and the coefficient of | Age of baby | No. of babies | Percentage | |-------------|---------------|------------| | (in days) | | | | 1-2 days | 13 | 6.8 | | 3-5 days | 175 | 91.1 | | 6-10 days | 4 | 2.1 | | Total | 192 | 100 | In the present study, the babies included were from day 1 to day 10 of life, majority (91%) of the babies were included on day 3 to day 5 of life. Table 2: Gender wise distribution of babies (n=192) | Gender | No. of babies | Percentage | |---------|---------------|------------| | Males | 109 | 56.8 | | Females | 83 | 43.2 | | Total | 192 | 100 | Out of the 192 babies included in the study, 56.8% (n=109) were males and 43.2% (n=83) were females. Table 3. Distribution of birth weight among babies (n=192) | Birth weight(Kg) | No. of babies | Percentage | |------------------|---------------|------------| | 2.5 - 3 | 170 | 88.5 | | 3 -4 | 22 | 11.5 | | >4 | 0 | 0 | | Total | 192 | 100 | Among the study group, majority (88.5%) of babies weighed between 2.5 to 3 kg at birth. Among babies included in this study, 88.7% (170/192) weighed between 2.5 and 3 kgs, 11.5% (22/192) weighed 3-4 kg. A majority of mothers (38 %) had a O positive blood group, whereas a least (0.5%) had AB negative blood group. Among the babies, 35.9% had O positive blood group, 37.5% had B positive blood group. A majority (98 %) of babies were breastfed, 2% were on both breast and formula feeding. | TSB | No. of babies | Percentage | Mean TSB | |-------|---------------|------------|----------| | <12 | 103 | 53.6 | 8.7542 | | 12-18 | 82 | 42.7 | 14.6341 | | >18 | 7 | 3.6 | 21.0129 | Among the 192babies included in the study, 53.6 % had a total bilirubin of 12 - 18 mg/dl, 42.7% had < 12 mg/dl. Table 5. Transcutaneous bilirubin values distribution in babies (n=192) | ······································ | | | | | | | |----------------------------------------|---------------|------------|----------|--|--|--| | TCB | No. of babies | Percentage | Mean TcB | | | | | <12 | 83 | 43.2 | 9.1831 | | | | | 12-18 | 102 | 53.1 | 14.9324 | | | | | >18 | 7 | 3.6 | 19.3571 | | | | Among the babies studied, predominating TCBS value of 12 to 18 was noticed among 43.2 % in mid sternum. Table 6. Age of baby and transcutaneous bilirubin values | Age of baby (in days) | No. of babies | Mean | SD | |-----------------------|---------------|---------|---------| | 1 | 0 | - | - | | 2 | 13 | 8.2077 | 4.17402 | | 3 | 125 | 12.4552 | 3.35700 | | 4 | 45 | 13.6356 | 3.47178 | | 5 | 5 | 16.0600 | 5.41923 | | 6 | 3 | 15.1000 | 6.82862 | | 7 | 1 | 18.0000 | | In the present study, 91.1% of the babies were in the 3rd to 5 th day of life. | Table | Table 7. Comparison between difference of TCB and TSB paired values | | | | | | | | |-------|---------------------------------------------------------------------|---------|---------|---------|---------|---------------------------------------------|--|--| | ТВ | No. of babies | TO | СВ | T | SB | Difference between TcBand TSB paired values | | | | | | Mean | SD | Mean | SD | | | | | <15 | 143 | 11.0615 | 3.05646 | 10.1269 | 3.20859 | 1.03 -1.08 mg/dl | | | | >15 | 49 | 17.1224 | 1.36782 | 16.3392 | 2.46131 | -5 to 3 mg/dl | | | | P val | ue | <0.000* | • | <0.000* | • | | | | The TcB – TSB difference for the paired measurements when infants with clinical jaundice who met the inclusion criteria the TSB was <15 mg/dL was 1.03 to 1.83 mg/dL. The difference were included. measurements when the TSB level was ≥ 15 mg/dL. and transcutaneous hiliruhin | and transcutaneous bini ubin | | | | | | |------------------------------|---------|----------|--|--|--| | Persons | r value | P value | | | | | correlation | | | | | | | TCB vs. TSB | 0.951 | <0.000** | | | | Pearson correlation between study variables is performed to find the degree of relationship. The correlation coefficient between total serum bilirubin and transcutaneous bilirubin values (mid sternum) was found to be 0.951 with a statistically significant p value. Table 9: Regression analysis | Regression equation | R^2 | Beta | P value | |---------------------|-------|-------|---------| | -1.127=1.018*TcB | 95.1 | 0.951 | <0.000* | Regression equation: TSB= -1.127=1.018*TcB # **DISCUSSION:** Neonatal hyperbilirubinemia is a complex metabolic condition caused by a combination of physiological and pathological mechanisms throughout the neonatal era. It is concerning because it is a frequent and preventable illness affecting approximately 25-50% of neonates. These newborns may suffer from serious problems such as cerebral palsy, encephalopathy, and mental impairment. However, neurological signs accompanying newborn hyperbilirubinemia are not present in approximately 15% of babies with kernicterus. Due to financial restrictions and medical-social concerns, an increasing number of newborn newborns are released from the hospital within 48 hours of birth. As a result, hyperbilirubinemia is identified less frequently prior to discharge. Given these lifethreatening problems, it is critical to predict jaundice in all neonates using a non-invasive and sensitive approach. This will assist in implementing effective preventative measures and early treatment to reduce mortality and morbidity. All 192 became progressively less positive as the TSB level increased, In the present study, 91.1% of the babies were in the 3rd to 5th with TcB - TSB difference of - 5 to 3 mg/dL for the paired day of life. A total serum bilirubin value of more than 18 mg/dl was observed in 3.6% of babies included in the present study. Table 8: Pearson correlation between total serum bilirubin Male babies constituted 56.8% of the study population and female babies were 43.2%. A similar study done by Mazrah Mohamed et al⁷ showed 56% as females and 43.8% males. Whereas in a study conducted by Pushpendra Kumar et al⁸ in 2018 on 100 neonates males constituted 62% and 38% were females. In a similar study conducted by Romagnoli et al⁹ in 2013 on 298 neonates 52% were male and 47.9% were females. In this study majority 88.5% of babies were of the weight 2500gms -3000gms and the remaining 11.5% were 3500-4000 gms. A similar study done by Mazrah Mohamed et al⁷ majority of the babies (86.9%) were between 2500 -3000gms. In the present study, 98% of the babies were exclusively breastfed and 2% had mixed feeding. These findings were consistent with a previous study by Pushpendra Kumar et al⁸ where 99% of the babies were exclusively breastfed and 1% were formula fed. In the present study, 91.1% of the babies were in the 3rd to 5th day of life and a mean \pm SD of transcutaneous bilirubin value on DAY 6 of life was 15.1 ± 6.8 . In a similar study conducted by Majid Mansouri et al¹⁰ 121 babies were more than day 4 of life and the mean mean \pm SD cutaneous bilirubin values were 19.8±3.53. TSB values in study newborns ranged from 0.17 mg/dL to 23 mg/dL; TSB values (25%) were $\geq 15 \text{ mg/dL}$. Overall, the mean \pm SD TcB – TSB difference for the 192 paired measurements was 0.89 ± 1.25 mg/dL, with differences ranging from – 5 mg/dL to 3 mg/dL. The correlation between paired measurements was 0.95. The TcB – TSB difference varied based on the TSB level. The TcB - TSB difference for the paired measurements when the TSB was <15 mg/dL was 1.03 to 1.83 mg/dL. The difference became progressively less positive as the TSB level increased, with TcB - TSB difference of -5 to 3 mg/dL for the paired measurements when the TSB level was ≥15 mg/dL. The findings were consistent in a similar study done by Taylor et al38 where TSB values in study newborns ranged from 1.8 mg/dL to 16.6 mg/dL; 20 TSB values (2.2%) were ≥15 mg/dL. Overall, our results and the results of other studies suggest that Overall, the mean ± SD TcB – TSB difference for the 925 paired TcB screening might be most effective at an age when most TSB measurements was 0.84 ± 1.78 mg/dL, with differences ranging levels would be expected to be <15 mg/dL. Overall, the findings from -6.9 mg/dL to 8.8 mg/dL. The correlation between paired in this study suggest that TcB measurements can be used measurements was 0.78. the TcB – TSB difference varied based effectively to screen newborn infants for significant on the TSB level. The mean TcB - TSB difference for the 31 hyperbilirubinemia, with TSB measurements reserved for those paired measurements when the TSB was <5 mg/dL was $1.3 \pm$ newborns whose TcB level is above a certain cutoff value. 2.3 mg/dL. The difference became progressively less positive as the TSB level increased, with a mean TcB – TSB difference of **CONCLUSION**: -1.4 ± 2.4 mg/dL for the 20 paired measurements when the TSB The findings in this study suggest that TcB measurements can level was >15 mg/dL. There were 52 TcB values (5.6% [95% CI: 4.2–7.3]) that were hyperbilirubinemia, with TSB measurements reserved for those >2 mg/dL lower than the matching TSB level, and 20 TcB values newborns whose TcB level is above a certain cutoff value (15 (2.2% [95% CI: 1.3–3.3]) that were ≥3 mg/dL lower than the mg/dl). We recommend that transcutaneous bilirubinometer can corresponding TSB level. Conversely, there were 215 TcB be effectively used as a screening tool to predict bilirubin levels values (23.2% [95% CI: 20.6-26.1]) that were 2 mg/dL higher in term babies and can be used to dictate management than the TSB level, and 92 TcB values (10.0% [95% CI: 8.1- guidelines. 12.1]) that were ≥ 3 mg/dL higher than the TSB level. Overall, TcB readings differed from the matched TSB value by a References clinically relevant difference in 28.8% (95% CI: 25.9–31.8) or 1. 12.1% (95% CI: 10.1–14.4) of measurements, respectively, management of hyperbilirubinemia in the term neonate; for a defined as a discrepancy (ie, absolute value of difference) of ≥ 2 safer first week. Pediatr Clin N Am 2004; 51: 843-861. mg/dL or ≥ 3 mg/dL between a TcB and TSB measurement. The correlation coefficient between total serum bilirubin and guidelines: management of neonatal jaundice. 2nd ed. Kuala transcutaneous bilirubin values (mid sternum) was found to be Lumpur, Malaysia: Ministry of Health; 2014. 0.951. This study found a strong linear relationship between 3. TSB and TcB with a r value of 0.95 and a statistically significant approach to management of neonatal jaundice and prevention p value of<0.001. This observation is similar to a study by of kernicterus. J pediatr 2002; 140:396-403 Taylor et al¹¹ where data were obtained from 27 nursery sites 4. Ratnavel N, Ives NK. Investigation of prolonged neonatal involving 925 matched TcB and TSB level from both the chest jaundice. Curr Paediatr. 2005; 15 (2): 85 – 91 and forehead. They used two brands of the TcB device 5. (BiliCheck and JM-103) and found a good correlation between Simpson EA, Goyal NK, et al. Discrepancies between TSB and TcB values. Majid Mansouri et al¹⁰ reported a good transcutaneous and serum bilirubin measurements. Pediatrics. positive linear relationship between TSB and TcB, of the 200 2015;135(2):224-231. neonates with a r value of 0.89. TcB forehead (r = 0.82) and TcB sternum (r = 0.80) in a similar Arch Dis Child Fetal Neonatal Ed 2006; 91: F434–F438. study conducted by Mazrah Mohamed et al⁷ on 130 neonates. In 7 other similar studies by Mandal et al¹² and Panda et al¹³, similar Yacob NM, Nasir A. Comparison between the Transcutaneous observations were made wherein, there was a significant and Total Serum Bilirubin Measurement in Malay Neonates correlation between transcutaneous bilirubin and total serum with Neonatal Jaundice. Malays J Med Sci. 2022 bilirubin. Regression equation derived from our study is TSB= Feb; 29(1):43-54. -1.127=1.018*TcB. Pearson correlation coefficient of 0.951. 8 This value is significant as p value was <0.001. an effective estimate of TSB values in healthy newborn infants Clinical Pediatrics and Neonatology, 6(4), 13-16. during their nursery stay. A potentially significant issue with the 9. use of TcB screening is that TcB levels provide less accurate D, Paolillo P et al. Validation of transcutaneous bilirubin estimates of TSB values at higher serum bilirubin levels. As nomogram in identifying neonates not at risk of opposed to lower levels in which TcB tended to overestimate hyperbilirubinemia: A prospective, observational, multicenter TSB levels, we found that at TSB levels ≥15 mg/dL. Other study. Early human development .2012;88(1):51-55. investigators have reported similar findings. In a study 10. comparing TcB and TSB values among a largely Hispanic F. A comparison between transcutaneous bilirubin (TcB) and population of newborns, Engle et al41 also found that TcB total serum bilirubin (TSB) measurements in term neonates. Int measurements tended to underestimate TSB at higher levels. J Pediatr. 2015;3(3):633-641. doi: 10.22038/ijp.2015.4352 Similarly, in one of the few assessments of TcB use in newborns 11. after discharge from the nursery, the overall correlation between Simpson EA, Goyal NK, Von Kohorn I, Dhepyasuwan N; Better TcB and TSB levels was 0.77, with increasing variability at Outcomes through Research for Newborns Network. higher TSB values; 40% of the 121 newborns in this study had Discrepancies between transcutaneous and serum bilirubin TSB levels ≥15 mg/dL. be used effectively to screen newborn infants for significant - Bhutani VK, Johnson LH, Keren R. Diagnosis and - Ministry of Health Malaysia. Clinical practice 2. - Johnson LH, Bhutani VK, Brown AK. system-based - Taylor JA, Burgos AE, Flaherman V, Chung EK, - Ho HT, Ng T K, Tsui KC and Lo YC. Evaluation of a A positive linear relationship was observed between TSB with new transcutaneous bilirubinometer in Chinese newborns. - Mohamed M, Ibrahim NR, Ramli N, Abdul Majid N, - Kumar, Р. (2019).AComparison Transcutaneous Bilirubin (TcB) and Total Serum Bilirubin The results of our study indicate that TcB measurement provides (TSB) Measurements in Term Neonates. Asian Journal of - Romagnoli C, Tiberi E, Barone G, De Curtis M, Regoli - Mansouri M, Mahmoodnejad A, Sarvestani RT, Gharibi - Taylor JA, Burgos AE, Flaherman V, Chung EK, measurements. Pediatrics. 2015 Feb;135(2):224-31. # **RESEARCH** O&G Forum 2024; 34-3s: 2745-2749 - 12. Mandal A, Bannerji R, Ray J, Mitra M, Azad SM, Basu 13. S. Correlation between transcutaneous bilirubin estimation Con and total serum bilirubin estimation in neonatal Seruh hyperbilirubinemia. BLDE Univ J Health Sci 2018; 3:36-42. Pres - 13. Panda SK, Gaurav A, Das P, Swain N, Rath S. A Comparison Between Transcutaneous Bilirubin and Total Serum Bilirubin Levels for the Management of Jaundice in Preterm Neonates by Bland-Altman Plot. Cureus. 2021 Oct 2;13(10):e18442.