CURRENT PRACTICE PATTERNS OF INDIAN PHYSIOTHERAPISTS IN THE REHABILITATION OF PARKINSON'S DISEASE: A CROSS-SECTIONAL SURVEY STUDY

Anjali Rawat¹, Dr. Vaibhav Agarwal², Dr. Abhishek Sharma PT³, Nikku Yadav⁴

- ¹PG, MPT (Neurology), Department of Physiotherapy, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun
- ²Lecturer, MPT (Neurology), Department of Physiotherapy, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun
- ³Senior Physiotherapist, Department of Physiotherapy, ANRC, Shastri Nagar, Dehradun
- ⁴Assistant Professor Clinical Research, Department of Community Medicine, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun

Abstract

Introduction: Parkinson's Disease (PD) is the second most prevalent neurological ailment worldwide. The prevalence of PD in India ranges from 33 -328 per 1,00,000. However, there is lack of data to support the existing practice followed by Indian physiotherapists for Parkinson's Disease rehabilitation. Objective: To examine Indian Physiotherapists' clinical practice trends regarding Parkinson's Disease assessment and rehabilitation and to learn more how evidence-based PD rehabilitation is implemented. Methodology: An electronic questionnaire was sent to the Indian physiotherapists via social networking sites. The e-survey questionnaire included three components: demographic details, assessment, and intervention of PD. 129 responses were received. Data Analysis: Data was analyzed using SPSS version 20 software. Result and Conclusion: Out of 129 responses, 122 met the inclusion criteria of this study. Because the information gathered was qualitative, the results were expressed in terms of frequencies and percentages. This study implicates that there is a great diversity in the Rehabilitation of PD, especially the assessment. Evidently, there is a need to follow the evidence-based practice regarding the rehabilitation of PD and execute them. Nevertheless, more research is needed to understand the reasons that are influencing the practice patterns of Indian Physiotherapists.

Keywords: Physiotherapists, Rehabilitation, Parkinson's Diseases, Physiotherapy.

Introduction

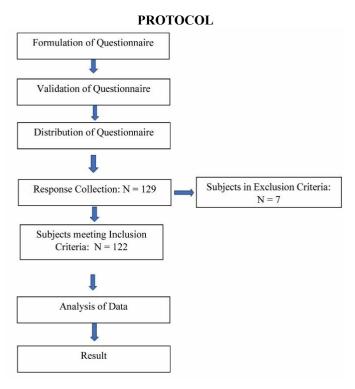
prevalent neurological ailment worldwide¹. Parkinson's Disease patients endure progressively worsening mobility issues even prevalence increases with age2; making an ageing population a with excellent medical care via medicines or neurosurgery. factor in its projected 12 million global cases by 2040³, making Therefore, physiotherapy is also required along with medical it the fastest growing neurodegenerative disorder. 4,5

rate and a faster pace of disease development than males, despite (EBP). ¹² Quality research, clinical knowledge, and patient value the fact that men have a twofold greater possibility of acquiring make up the core element of EBP. ¹³ Physiotherapists have motor and non – motor symptoms.9

growing mobility limitations, such as, issues with walking, rehabilitation of Parkinson's Disease: Transfer, Gait, Posture, balance, posture and transfers. This often gives rise to increased Dexterity, Balance and Physical Capacity. 10 dependence, aversion to falls, unfortunate incidents, and sedentary lifestyle, which elevates one's risk of osteopenia or

cardiovascular disorders as well as social isolation. In Parkinson's Disease (PD) is progressive and is the second most conclusion, expenses rise and quality of life declines. 10 PD treatment.¹¹ Physiotherapy is not likely to affect the disease India, with a land size of 3.287million km² and a population of development directly, but it can enhance the activities of daily 1436.51 million, is the largest country in South Asia.⁶ According living (ADLs) by training the Parkinson's Disease patients how to Vikas Dhiman et al.'s comprehensive review and meta- to use movement patterns and strategies. ¹⁰ There are numerous analysis on the prevalence of Parkinson's Disease, the studies showing the effectiveness of physical therapy, including prevalence rate of Parkinsonism in India ranges from 33 – 328 the assessment and management of people with PD (pwp). To per 1,00,000 people. A comparative study has shown that both be able to select the optimal treatment option and help pwp reach incidence and prevalence of PD are 1.5 – 2 times higher in males their optimum level of functional independence and social when compared with females. Females have a greater mortality engagement, a physiotherapist must use evidence-based practice PD. In addition, there are gender-specific differences in disease demonstrated a great propensity for professional answerability risk factors, treatment outcomes, and symptoms, including both and incorporating the finest available evidence in their clinical practice during the last few decades.¹⁴ An evidence-based The majority of Parkinson's Disease patients struggle with literature review highlighted six key domains for the

According to a meta-analysis, traditional physiotherapy, treadmill training, resistance training, strategy training, dual tasking, dance, martial arts, balance and gait training are all useful in improving the motor symptoms, easing the balance issues, gait abnormalities, and quality of 15 life of pwp. To improve the patient outcomes and develop clinical practice, detailed and evidence-based guidelines guiding the use of standardized evaluation methods, resulting variables, and therapy approaches specific to PD are needed. However, there is a dearth of data to support the existing practice followed by Indian physiotherapists for Parkinson's Disease rehabilitation. the current practice pattern of Indian Identifying physiotherapists in PD is a crucial step in guiding the future research on Parkinson's disease assessment and management. Therefore, the motive of this study is to determine the current practice patterns of Indian physiotherapists concerning the assessment and physiotherapy intervention of PD.


METHODOLOGY

Questionnaire Origination

This study was approved by the head of the physiotherapy department (HOD), In-charge of the department and other senior faculties. A questionnaire comprising 41 items was produced as a result of a unified discussion and decision between the research team and the experts following the evidence-based protocol in the rehabilitation of PD and through the previous DATA ANALYSIS researches done on the assessment and management of Questionnaire Origination Parkinson's disease. Three neurologists validated the After the evidence-based questionnaire was developed, questionnaire after it was developed, and few changes were reliability and internal consistency of the questionnaire were done. A pilot study with 12 therapists was conducted in March tested using Cronbach's Alpha Coefficient. 2023 to test the reliability of the questionnaire.

Survey study with Final Questionnaire

had 16 questions about the therapist's assessment of Parkinson's in terms of frequencies and percentages. disease patients and how frequently they assess patients using the scales, and the third section included 15 questions about the RESULT intervention given to PD patients by the therapists in early, mid Questionnaire Origination and late stage. The evidence-based questionnaire along with the There were 12 pilot participants in the pilot study. The reliability survey study was explained in the form and the unanimity of the and the reliability of intervention statistics was 0.737. respondents was maintained. The survey was opened for 2 Survey study with Final Questionnaire months (from April 5, 2023 – June 4, 2023). 129 responses were 129 responses were received, and 122 responses were included received within this time period, with 7 responses being in the study. This study received responses from 14 states and eliminated. Therefore, the data were collected from 122 the majority was from Uttarakhand (n=78, 63.9%), and the individuals for this study. Inclusion criteria - Indian majority of the participants were females (n=90, 73.8%). The physiotherapists who were: graduated physiotherapists, majority claimed a bachelor's degree as their highest physiotherapists pursuing masters, physiotherapists working in qualification. Most of the respondents had the experience of less tertiary care hospitals, physiotherapy interns. first, second, third than a year (46.7%) and the practice setting was hospital-based and Final year undergraduates, and physiotherapists were excluded from the study.

Survey study with Final Questionnaire

This study was based on primary data collected through The final questionnaire contained 40 questions divided into Questionnaire. The data were numerically coded in MS Excel three sections. The first section featured 9 questions about 2013, and analysis of the data was done using the SPSS version demographic details of the physiotherapists, the second section 20. Because the data was qualitative, the results were expressed

consent form was created in Google Forms and forwarded to of the Questionnaire was checked using the data obtained from Indian therapists via social networking sites. The purpose of this these 12 responses. The overall statistics reliability was 0.647

foreign-based outpatient clinic (53.3%). Majority of the participants had seen more than one and less than five (54.9%) PD patients annually. 42.6% of the participants were aware of the European Physiotherapy Guideline and 19.2% of physiotherapists were always following this guideline.

> The majority of the respondents use UPDRS (Unified Parkinson's Disease Rating Scale – 37.7%) for the rating of PD motor symptoms. To assess balance, gait, transfers, physical capacity, dexterity, and cognition most of the participants use

Berg Balance Scale (76.2%), 6 Minute Walk Test (41.8%), Modified Parkinson Activity Scale (46.7%), 6 Minute Walk Test with Borg Scale (68.9%), Unified Parkinson Disease Rating Scale (37.9%), and Mini Mental Status Examination (72%) respectively. 77.9% participants ask the patient to maintain a falls diary. Most to the therapists had seen Forward head posture (45.1%) in pwp and the most common pain site was back pain (53.3%). Mostly, the participants monitor the progression of the PD patients, but they don't use any specific scales (34.4%).

According to the participants, preferred exercise duration was 30 minutes (50.8%). 77% physiotherapists advise the patients to maintain their exercise diary. Most of the participants ask the patients to exercise after 60 minutes of taking medicine (57.8%). To reduce pain, the majority use posture correction exercises (36.9%). To improve balance, freezing of gait, transfers, dexterity, physical capacity, and cognition most of the respondents use mirror therapy (41.8%), dual tasks (40.2%), auditory and visual cues (46.7%), functional activities (66.4%), muscle strength and joint mobility (82%), dual tasks (30.3%) respectively. To improve vital functions, the majority use Diaphragmatic breathing (45.1%). Patient education was done by 99.2% participants and to improve stooped posture 56.6% use posture training. The later stage management goals of most of the participants was to educate the caregivers.

Table 1: Demographic details of the respondents

Characteristics	N (%)
State	
Uttarakhand	78 (63.9)
UP	9 (7.4)
Bihar	1 (0.8)
Delhi	10 (8.2)
Haryana	3 (2.5)
Telangana	1 (0.8)
MP	2 (1.6)
Karnataka	3 (2.5)
Punjab	5 (4.1)
Maharashtra	4 (3.3)
Gujarat	3 (2.5)
Tamil Nadu	1 (0.8)
Himanchal Pradesh	1 (0.8)
Rajasthan	1 (0.8)
Experience	
Less than a year	57 (46.7)
More than 1 & less than 5 yr.	56 (45.9)
More than 5 & less than 10 yrs.	7 (5.7)
More than 10 years	2 (1.6)
Sex	
Male	32 (26.2)
Female	90 (73.8)
Practice Setting	
Hospital based outpatient clinic	65 (53.3)
Physiotherapist operated private practice	22 (18)
Physician owned private practice	4 (3.3)
Inpatient	11 (9)
Others	20 (16.4)
Qualification	
Bachelors	77 (63.1)
Masters	39 (32)
PhD	6 (4.9)
Conferences/ educational courses	

110101	12 (10.10)
Sometimes	42(40.4)
Always	20 (19.2)
Table 2: Responses regarding the assessme	nt of PD
Characteristics	N (%)
PD Rating Scale	
Hoehn and Yahr Scale	35 (28.7)
Unified Parkinson's Disease Rating Scale	46 (37.7)
(UPDRS)	
Both a & b	36 (29.5)
Others	5 (4.1)
Balance	
Berg Balance Scale	93 (76.2)
Rapid Turns Test	6(4.9)
Push & Release Test	10 (8.2)
Times Up & Go Test	11 (9.0)
Others	2 (1.6)
Gait	
Rapid Turns Test	39 (32.0)
Timed up & Go Test	29 (23.8)
Six Minute Walk Test	51 (41.8)
Others	3 (2.4)
Falls Diary	
Yes	95 (77.9)
No	27 (22.1)

Five Times Sit to Stand

Timed Up & Go Test

Modified Parkinson Activity Scale

Others

Six Minute Walk with Borg Scale

Five Times Sit to Stand

Others

Never

Sometimes

Always

Nine-hole peg test

UPDRS

Functional dexterity test

Box and block test

Dexterity assessment frequency

More than once annually

Once annually

Never

Others

Less than 1

More than 1 and less than 5

More than 5 and less than 10

More than 10

Yes

No

Never

Knowledge about European Guideline

Frequency of following guideline

PD patient's exposure

Transfers

Dexterity

Physical Capacity

36 (29.5)

72 (59)

12 (9.8)

2(1.6)

21 (17.2)

77 (54.9)

23 (18.9)

11 (9.0)

52 (42.6)

70 (57.4)

42 (40.40)

37 (30.3)

26 (21.3)

57 (46.3)

84 (68.9)

37 (30.3)

35 (28.7)

61 (50.0)

26 (21.3)

16 (24.2)

25 (37.9)

2(3.0)

3 (4.5)

1(0.8)

2(1.6)

DDDT/DDT (D. 1. 1. 1. 1. 1)	1 (1.5)	E ' D'	
PPBT/PPT (Purdue pegboard test)	1 (1.5)	Exercise Diary	04 (77.0)
Rapid Turns Test	1 (1.5)	Yes	94 (77.0)
Manual dexterity scale	3 (4.5)	No	28 (23.0)
No specific scale	8 (12.1)	Preferred time for exercise	10 (8.2)
Cognition assessment frequency		Immediately after taking medicine	19 (15.6)
Never	12 (9.8)	After 60 minutes of taking medicine	73 (59.8)
Sometimes	56 (45.9)	After 90 minutes of taking medicine	19 (15.6)
Always	54 (44.3)	Anytime	11 (9.0)
Cognition		Pain Management	
Mini Mental Status Examination	85 (72.0)	Transcutaneous Electrical Nerve	
Scales for Outcomes in Parkinson's	29 (24.6)	Stimulation (TENS)	42 (34.4)
Disease – Cognition (SCOPA-COG)		Interferential Therapy (IFT)	13 (10.7)
Others	4 (3.3)	Trigger point Release	5 (4.1)
Posture Assessment Frequency		Soft tissue manipulation	12 (9.8)
Never	2 (1.6)	Posture correction	45 (36.9)
Sometimes	18 (14.8)	Others	5 (4)
Always	102 (83.6)	Balance	<u> </u>
Posture seen in PD	102 (03.0)	Mirror Therapy	51 (41.8)
Forward Head Posture	55 (45.1)	External Cues	18 (14.8)
Kyphotic Posture	53 (43.4)	Dance	1 (0.8)
* *	, ,	Functional Activities	
Scoliosis	2 (1.6)		46 (37.7)
Others	12 (9.9)	Others	6 (4.9)
Pain Assessment Frequency		Freezing of Gait	20 (16 1)
Never	4 (3.30	Action Observation Training	20 (16.4)
Sometimes	74 (60.7)	Dual Tasking	49 (40.2)
Always	44 (36.1)	External Cues	26 (21.3)
Pain Site		Treadmill training	19 (15.6)
Back Pain	65 (53.3)	Others	8 (6.4)
Lower limbs	36 (29.5)	Transfers	
Upper limbs	18 (14.8)	From on to off practice	29 (23.8)
Others	3 (2.4)	Mental Imagery & Action Observation	
Frequency of progression monitoring	<u> </u>	Training	32 (26.2)
Never	6 (4.9)	Dance	2 (1.6)
Sometimes	45 (36.9)	Auditory and Visual cues	57 (46.7)
Always	71 (58.2)	Others	2 (1.6)
PD progression monitoring	, = (= = =)	Dexterity	
Upgraded ADL with Modified Ergonomics	1 (0.8)	Functional activities	81 (66.40
Pre and post symptoms	5 (4.1)	Reaching Activities	33 (27.0)
Hoehn and Yahr Scale	3 (2.5)	Tactile Cues	6 (4.9)
Gait, Muscle tone and Posture	5 (4.1)	Others	2 (1.6)
· ·		Physical Capacity	2 (1.0)
Based on ADLs, FIM	5 (4.1)	Improve muscle power and Joint Mobility	100 (82.0)
Flexibility, MMT, Balance and Movements	4 (3.3)		, ,
UPDRS	19 (15.6)	Martial Arts	3 (2.5)
Equilibrium and Non-Equilibrium Tests	1 (0.8)	Dance	2 (1.6)
Clinical Rating Scale	15 (12.3)	Treadmill Training	15 (12.3)
Writing	1 (0.8)	Others	2 (1.6)
Balance and Gait	3 (2.5)	Cognition	
Balance and Co-ordination, Posture,	4 (3.3)	Mental Imagery	34 (27.9)
Tremor, Speech		Action Observation Training	33 (27.0)
Patient Record, diary	13 (10.7)	External Cues	15 (12.3)
Both UPDRS and H&Y Scale	1 (0.8)	Dual Tasking	37 (30.3)
No specific scale	42 (34.4)	Others	3 (2.4)
Table 3 Responses regarding the interventi		Vital Function Intervention?	
Characteristics	N (%)	Yes	110 (90.2)
Exercise duration	- 1 (/ 0)	No	12 (9.8)
15 minutes	17 (13.9)	Vital Functions	12 (7.0)
		Diaphragmatic Breathing	55 (45.1)
30 minutes	62 (50.8)	Glossopharyngeal Breathing	
45 minutes	32 (26.2)		1 (0.8)
60 minutes	7 (5.7)	Inspiratory and Expiratory muscle training	44 (36.1)
>60 minutes	4 (3.3)	Posture Correction	15 (12.3)

Others	7 (5.7)		
Patient and his/her caregiver education			
Yes	121 (99.2)		
No	1 (0.8)		
Stooped posture			
Stretching and Strengthening Exercises	41 (33.6)		
Posture training	69 (56.6)		
Proprioceptive discrimination exercises	10 (8.20		
Aerobic Exercises	1 (0.8)		
Others	1 (0.8)		
Later stage management goals			
To maintain vital functions	34 (27.9)		
To prevent pressure sores and contractures	29 (23.8)		
To educate the caregivers	49 (40.2)		
Others	10 (8.2)		

DISCUSSION

The comprehensive purpose of this study was to figure out the current practice pattern of Indian Physiotherapists concerning the rehabilitation of pwp. Overall, 129 responses were received, by the experience of more than one year and less than 5 years. and less than 5 PD patients annually followed by more than 5 and less than 10 patients annually.

The questionnaire of this study was based on the six core domains that are usually targeted by the physiotherapists in the rehabilitation protocol of PD.1 According to our data, most physiotherapists use the Unified Parkinson's Disease Rating Scale (UPDRS), followed by the Hoehn and Yahr scale. Some physiotherapists use both scales. Movement disorder society weaknesses and vagueness while retaining its original design. the Indian physiotherapists. Few therapists responded that they don't rate the motor symptoms of PD.

Parkinson's Disease.9 Out of 122 therapists, 93 were using Berg test, TUG and Rapid Turns Test to assess balance in people with PD. The second key domain is gait which is assessed using Rapid Turns Test, TUG, Six Minute Walk Distance (6MWD),

turns test, TUG test. Few therapists use FGA and 3 Minute Walk Test. Falls diary is also an essential part of the assessment and is maintained by people with PD. Falls diary gives therapists an information regarding the problem that needs to be addressed. It is a one-pager form which patient fills when he experiences fall (or near fall).1 95 (77.9%) therapists out of 122 ask people with PD to fill the falls diary. The third core area that physiotherapists should assess or address, is the ability of pwp to transfer from one place or position to another place or position. The scales and tests recommended by EPG are M-PAS bed and chair, 5 Times Sit to Stand (FTSTS), and TUG test.1 According to the findings of this study, 57 (46.7%) out of 122 physiotherapists use M-PAS, 37 (30.3%) use FTSTS, 26 (21.3%) use TUG test, and few therapists were not using any scale or test to assess transfer of

Physical capacity is the fourth core area that is addressed by physiotherapists. To assess physical capacity 6MWD with Borg scale and FTSTS are used. In this study, 68.9% of Indian physiotherapists were using 6MWD with Borg Scale, 30.3% were using FTSTS (1 therapist was not assessing the physical with 7 being eliminated from the study because two of the capacity of pwp in his/her practice). The fifth key domain is responses came from different nations, while the other five Dexterity (the ability of an individual to grip and manipulate lacked information about the state in which they practiced. items using coordinated movements of hand and fingers). Therefore, 122 responses were included in the study. The According to EPG, Nine Hole Peg Test (NHPT) is used to assess responses were obtained from 14 states and the majority of the the dexterity in pwp. From this study, we found that the majority responses were from Uttarakhand followed by Delhi and UP. (71.3%) Indian physiotherapists assess dexterity and 28.7% 73.8% participants were females and 26.2% were males with doesn't assess dexterity. Out of 71.3% physiotherapists 21.3% majority having the experience of less than one year followed were regularly assessing dexterity and 50% were occasionally assessing dexterity. The responses collected on the usage of the highest level of qualification held by 63.1% of participants scales in assessing dexterity were diverse, with the majority of was a Bachelor's degree, 32% a Master's degree, and 4.9% a the therapists employing the UPDRS (37.9%), followed by PhD. Most of the physiotherapists had managed more than one NHPT (24.2%) and 12.1% physiotherapist were not using any specific scale. Rest of the therapists were using Functional and Manual Dexterity Test, Box and Block Test, MDS-UPDRS, Symptoms Assessment, Mini Mental Status Examination (MMSE) and Purdue Pegboard test (PPBT or PPT).

Mild cognitive impairment in PD (PD-MCI) is one of the nonmotor symptoms which quality of life in pwp. It usually remains stable and even reverts back to normal cognitive level, but in some patients, it leads to Parkinson's Disease Dementia (MDS) has revised the UPDRS scale and found some flaws in (PDD).25 Therefore, it is necessary to monitor the cognition of it. Therefore, they altered the original scale by addressing its pwp to prevent PDD. The scales that are recommend for the assessment of cognition are MMSE and Scales for Outcomes in The revised scale is known as MDS-UPDRS.24 However, based Parkinson's Disease – Cognition (SCOPA-COG)1. Our survey on the finding of this study, MDS-UPDRS is scarcely used by showed that 90.2% of physiotherapists assess cognition and 9.8% has never assessed cognition in PD patients. Out of 90.2% therapists, 44.3% often assessed cognition in pwp and 45.9% Balance is one of the key components in the rehabilitation of assessed cognition from time to time. 85 therapists use MMSE, 29 therapists use SCOPA-COG, and few use Montreal Cognitive Balance Scale (BBS) to assess balance in people with Assessment (MoCA) test to assess cognition. The sixth core area Parkinson's Disease. The remaining therapists were using Rapid is posture.9 Postural dysfunction is usually seen in pwp, it Turns Test, Push and Release Test, timed up and go (TUG) Test occurs due to motor axial involvement. Posture has two and Romberg Test. European Physiotherapy Guidelines (EPG) components: orientation and balance. Involvement of recommended Berg Balance Scale (BBS), Push and Release orientation component results in stooped posture, camptocormia and Pisa syndrome. Balance component is affected due to loss of postural reflex which causes postural instability. Postural instability is usually seen in Later stage of PD.26 Scoliosis is Functional Gait Assessment (FGA), and Modified Parkinson also more common in PD as compared to normal elderly Activity Scale (M-PAS gait).1 From this study, we found that individuals, mostly single curvature and is more prevalent in majority of the Indian therapists use 6MWD followed by Rapid females.27 Posture assessment is important, and in our survey,

scoliosis, simian posture and camptocormia in pwp.

Pain is a heterogenous symptom and distressing factor in PD. It As pain affects the quality of life of pwp, pain management is has a huge impact on the quality of life of pwp. Most common an important goal. The methods to reduce pain are: pain type of pain is musculoskeletal pain followed by radicular pain, education, postural correction, soft tissue manipulation, arthritic and visceral pain, central neuropathic pain and dystonic electrotherapy (mainly TENS), mirror therapy, trigger point pain pain worsens with the progression of PD. All types of Pain release. 1 Most (36.9%) of the Indian physiotherapists use are more prevalent in later stage as compared to early and mis posture correction exercises, 34.4% use TENS, 10.7% use IFT stage. The most common site of musculoskeletal pain is low while the rest use trigger point release, soft tissue manipulation, back and neck. 28.29 According to the information gathered by hot fomentation and combination therapy to alleviate pain. To our survey, 96.8% Indian physiotherapists assess pain in pwp. improve balance, majority of the Indian physiotherapists use 60.7% of therapists assess pain from time to time while, 36.1% mirror therapy followed by functional activities and external of therapist assess pain frequently. Most of the therapists cues (visual, tactile, auditory, olfactory and gustatory cues). Few responded that their patients mostly complaints of back pain physiotherapists use high intensity dance to improve balance. (53.3%) followed by lower limb (29.5%), upper limb (14.8), and There is diversity among Indian physiotherapists in improving low back pain. few therapists said, their patients never the freezing of gait. Majority of the Indian physiotherapists use complained of pain. About 95.1% (out of 122) of Indian dual tasking, followed by external cues, action observation physiotherapists monitors the progression of PD. Of 95.1%, training, and treadmill training to improve gait. Some therapists 58.2% therapists always monitor the progression of PD. There use the combination of these exercises and very few is great diversity in the process of PD progress monitoring in physiotherapists use Rhythmic Initiation (PNF technique), gait Indian Physiotherapists. Majority (34.4%) of the therapist training with obstacles, and cycling. monitor the progression of PD.

improve transfers, improve balance, improve freezing of gait, training (27%), and external cues (12.3%). physiotherapists ask the patients to maintain the exercise diary. Proprioceptive neuromuscular facilitation (PNF). According to EPG, therapists should recommend the patient to exercise during on period (After 90 minutes of taking medicine). Limitations To improve physical capacity and to delay the onset of activity

it was found that 98.4% of Indian physiotherapists assess limitation, gradually patient should start 'on to off practice'. Posture in PD patients. Out of 98.4% physiotherapists, 83.6% Majority (59.8%) of Indian physiotherapists ask the patient to assess posture vey frequently. Majority of the Indian exercise after 60 minutes of taking medicine and 15.6 % Physiotherapists has seen Forward head posture (45.1%) and therapists ask the patient to exercise after 90 minutes of taking Kyphotic Posture (43.4%) and few physiotherapists has seen medicine. Few therapists ask the patient to exercise immediately after taking medicine or anytime.

responded that they check the progression of PD, but there are To improve transfers of pwp, the methods used by Indian no specific scales, followed by UPDRS (15.6%), clinical rating physiotherapists were: auditory and visual cues (46.7%), mental scale (12.3%), 10.7% therapists monitor the progression by Imagery and action observation training (26.2%), from on to off maintaining patient record or diary, rest of the physiotherapists practice (23.8%). Very few physiotherapists use dance and use Hoehn and Yahr Scale (H&Y), equilibrium and non-transfer training. To improve dexterity of pwp, majority (66.4%) equilibrium tests. Some therapists assess balance, gait, muscle of the Indian therapists use Functional activities followed by tone, flexibility, Manual Muscle Testing (MMT), coordination, reaching activities (27%) and some physiotherapists use tactile speech, tremors, pre and post symptoms, Activities of daily cues. To improve physical capacity, 82% (out of 122) of Indian living (ADLs) and Functional Independence measure (FIM) to physiotherapists improve muscle power and joint mobility of the patients, followed by treadmill training (12.3%). Rest of the The goals of physiotherapy regarding pwp are: patient physiotherapists use martial arts, high intensity dance, aerobic education, motivation, self-efficacy, prevent physical inactivity exercises and combination of these exercises. To improve or sedentary lifestyle, prevent fear of fall (or fall), reduce pain, cognition of pwp, Indian physiotherapists mostly use dual improve Physical capacity, onset activity limitation delay, tasking (30%), mental imagery (27.9%), action observation

improve manual activities. The goals of later stage are: to The goals of Indian physiotherapists for the management of later maintain vital functions, prevent pressure sores and stage are: caregiver education (40.2%), vital function contractures, and support caregivers/nurses. 99% of the Indian maintenance (27.9%), and pressure sores and contracture physiotherapists educate the patients regarding their condition (23.8%). 7.4% of physiotherapists have all of these goals for and about the progression of the disease. To prevent physical later stage patients. Vital function management plays a crucial inactivity, pwp should exercise for atleast 30 minutes (5 role in the rehabilitation of PD in later stage. About 90.2% of days/week).1 According to our survey, 50.8% (62) of Indian Indian physiotherapists manage vital functions. To manage vital Physiotherapists ask the patients to exercise for 30 minutes functions, majority of the Indian physiotherapists works on every day and 26.2% (32) ask the patients to exercise for 45 diaphragmatic breathing (45.1%), inspiratory and expiratory minutes. The rest of the physiotherapists ask the patient to muscle strength (36.1%), and posture correction (12.3%). Rest exercise for 15 minutes (13.9%), 60 minutes (5.7%), and >60 of the therapists use Active cycle of breathing technique minutes (3.3%). Exercise diary is an important part of the (ACBT), incentive spirometry and combination of these rehabilitation. In that diary, pwp are supposed to write how exercises. For stooped posture, 56.6 % Indian physiotherapists much time they have spent doing exercises each day in a week give posture training, 33.6% use stretching and strengthening and will rate how they feel after doing exercises using Borg exercises, 8.2% use Proprioceptive discrimination exercises and Scale. Our survey showed that 77% of the Indian very few therapists use posture correction in combination with

The generalizability of this study was limited. The sample size 13. of this study was limited (122) and it cannot represent the based practice and rationale of preferred approach in stroke practice pattern of all Indian physiotherapists.

CONCLUSION

This study provided a direction towards the practice pattern that 14. Indian Physiotherapists follow for the assessment and medicine: what it is & what it isn't. BMJ 1996;312:71-2. management of Parkinson's disease (PD). Nevertheless, more 15. research is needed to understand the reasons that are influencing evidence-based practice confidence scale for health care the practice patterns of Indian Physiotherapists. This study professionals. J Eval Clin Pract. 2011 August; 17(4):794-800. implicates that there is a great diversity in the Rehabilitation of 16. PD, especially the assessment. Evidently, there is a need to Parkinson's Disease: A Meta-Analysis of Present Treatment follow the evidence-based practice regarding the rehabilitation Modalities. American Society of Neurorehabilitation, 2020, of PD and execute them.

By finding out the current practice pattern of Indian 17. physiotherapists in the rehabilitation of PD, this study provides approaches in patients with Parkinsonism disease: a literature guidance to other future studies and is the first step in forming review. International Journal of Heath Sciences and Research, the guidelines for Indian physiotherapists regarding PD Vol.7; Issue: 5; May 2017. rehabilitation.

References

- Keus SHJ, Munneke M, Graziano M, et al. European Physiotherapy Guideline for Parkinson's disease. 2014; KNGF/ParkinsonNet, the Netherlands.
- Pringsheim T, Jette N, Frolkis A, Steeves T. the prevalence of Parkinson's Disease: a systematic review and meta-analysis. Movement Disorders 2014;29 (13):1583-1590.
- Parkinson's UK. The incidence and prevalence of 3. Parkinson's in the UK report 2019.
- Dorsev ER. Bloem BR. The Parkinson call to Action. JAMA Neurology. 2017. 3299 Pandemic-A
- GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.
- Lancet Neurol. 2019 May; 18(5):459-480. doi: 6. 10.1016/S1474-4422(18)30499-X. Epub 2019 Mar 14. PMID: 30879893; PMCID: PMC6459001.
- Aaron O'Neill; India: Estimated total population from 2016 to 2028. Statista, April 21, 2023.
- Dhiman V, Menon GR, Kaur S, Mishra A, et al. A systematic review and meta-analysis of prevalence of Epilepsy, Dementia, Headache, & Parkinson Disease in India. Neurol India 2021; 69:294-301.
- Haaxma CA, Bloem BR, et al. Gender differences in Parkinson's Disease. Journal of Neurology, Neurosurgery & Psychiatry. 2007 August; 78(8):819-824.
- Cerri S, Mus L and Blandini F. Parkinson's Disease in Women and Men: What's the Difference? Journal of Parkinson's Disease 9 (2019) 501-515 DOI 10.3233/JPD-191683
- 11. Keus SHJ, Bloem BR, et al. Evidence-Based Analysis of Parkinson's Disease *Physical* Therapy in with Recommendations for Practice and Research. Movement Disorders. Vol 22, No. 4, 2007: 451-460.
- Keus SHJ, et al. Physical Therapy in Parkinson's Disease: Evolution and Future Challenges. Movement Disorders Vol. 24, No. 1, 2009, pp. 1-14. 2008 Movement Disorder Society

- Algahtani MM, et al. Current scenario of evidencerehabilitation among physiotherapists in Saudi Arabia: A cross-sectional survey. Saudi Journal for Health Sciences 2018;7:53-64.
- Sackett DL, Rosenberg WM, et al. Evidence based
- Salbach NM, Jaglal SB. Creation and validation of the
- Radder DLM, Domingos J, et al. Physiotherapy in Vol. 34(10) 871-880.
- Kumar S, et.al. The effectiveness of physiotherapy
- Albiol-Perez S, Gil-Gomez JA, et.al. The Effect of Balance Training on Postural Control in Patients with Parkinson's Disease Using a Virtual Rehabilitation System. Methods Inf Med. 2017 Mar 23;56(2):138-144. doi: 10.3414/ME16-02-0004. Epub 2017 Feb 28. PMID: 28244545.
- Pereira APS, Marinho V, et.al. Music Therapy and Dance as Gait Rehabilitation in Patients with Parkinson Disease: A Review of Evidence. J Geriatr Psychiatry Neurol. 2019 Jan; 32(1):49-56. doi: 10.1177/0891988718819858. Epub 2018 Dec 17. PMID: 30558462.
- Feng H, Li C, et.al. Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson's Disease Patients: A Randomized Controlled Trial. Med Sci Monit. 2019 Jun 5;25:4186-4192. doi: 10.12659/MSM.916455. PMID: 31165721; PMCID: PMC6563647.
- Seid AA, Demirdel E, et.al. Multidisciplinary Rehabilitation for People with Parkinson's Disease: A Systematic Review and Meta-Analysis. Parkinsons Dis. 2022 Feb 28;2022:2355781. doi: 10.1155/2022/2355781. PMID: 35265314; PMCID: PMC8901313.
- Frazzitta G, Maestri R, et.al. Intensive rehabilitation treatment in early Parkinson's disease: a randomized pilot study with a 2-year follow-up. Neurorehabil Neural Repair. 2015 Feb;29(2):123-31. doi: 10.1177/1545968314542981. Epub 2014 Jul 18. PMID: 25038064.
- Kearney E, Shellikeri S, et.al. Augmented visual feedback-aided interventions for motor rehabilitation in Parkinson's disease: a systematic review. Disabil Rehabil. *May*;41(9):995-1011. 10.1080/09638288.2017.1419292. Epub 2018 Jan 9. PMID: 29316816.
- 24. Arroyo-Ferrer A, Sanchez-Cuesta FJ, et.al. Validation of Cognitive Rehabilitation as a Balance Rehabilitation Strategy in Patients with Parkinson's Disease: Study Protocol for a Randomized Controlled Trial. Medicina (Kaunas). 2021 Mar 26;57(4):314. doi: 10.3390/medicina57040314. PMID: 33810477; PMCID: PMC8065776.
- Okada Y, Ohtsuka H, et.al. Effectiveness of Long-Term 25. Physiotherapy in Parkinson's Disease: A Systematic Review and Meta-Analysis. J Parkinsons Dis. 2021;11(4):1619-1630.

- doi: 10.3233/JPD-212782. PMID: 34366377; PMCID: PMC8609713.
- 26. Goetz CG, Tilley BC, et.al., Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, November 2008;23(15):2129-170.
- 27. Fang C, Lv L, et.al. Cognition Deficits in Parkinson's Disease: Mechanisms and Treatment. Parkinsons Dis. 2020 Mar 24;2020:2076942. doi: 10.1155/2020/2076942. PMID: 32269747; PMCID: PMC7128056.
- 28. Benatru I, Vaugoyeau M, Azulay JP. Postural disorders in Parkinson's disease. Neurophysiol Clin. 2008 Dec; 38(6):459-65. doi: 10.1016/j.neucli.2008.07.006. Epub 2008 Aug 21. PMID: 19026965.
- 29. Baik JS, Kim JY, et.al. Scoliosis in patients with Parkinson's disease. J Clin Neurol. 2009 Jun;5(2):91-4. doi: 10.3988/jcn.2009.5.2.91. Epub 2009 Jun 30. PMID: 19587816; PMCID: PMC2706417.
- 30. Valkovic P, Minar M, et.al. Pain in Parkinson's Disease: A Cross-Sectional Study of Its Prevalence, Types, and Relationship to Depression and Quality of Life. PLoS One. 2015 Aug 26;10(8):e0136541. doi: 10.1371/journal.pone.0136541. PMID: 26309254; PMCID: PMC4550419.
- 31. Tai YC, Lin CH. An overview of pain in Parkinson's disease. Clin Park Relat Disord. 2019 Nov 28;2:1-8. doi: 10.1016/j.prdoa.2019.11.004. PMID: 34316612; PMCID: PMC8302194.

- 32. Wilson T, Martins O, Efrosman M, DiSabatino V, Benbrahim BM, Patterson KK. Physiotherapy practice patterns in gait rehabilitation for adults with acquired brain injury. Brain Inj. 2019;33(3):333-348. doi: 10.1080/02699052.2018.1553067. Epub 2018 Dec 12. PMID: 30540506.
- 33. Gohil P & Baldha G, et.al. (2021). Current Trends Among Indian Physiotherapist About Lumbosacral Radiculopathy: A Cross Sectional Survey. Journal of Scientific Research. 65. 84-88. 10.37398/JSR.2021.650311.
- 34. Corkery MB, Edgar KL, Smith CE. A survey of physical therapists' clinical practice patterns and adherence to clinical guidelines in the management of patients with whiplash associated disorders (WAD). J Man Manip Ther. 2014 May; 22(2):75-89. doi: 10.1179/2042618613Y.00000000048. PMID: 24976750; PMCID: PMC4017798.
- 35. Davies C, Nitz AJ, et.al. Practice patterns when treating patients with low back pain: a survey of physical therapists. Physiother Theory Pract. 2014 Aug;30(6):399-408. doi: 10.3109/09593985.2013.877547. Epub 2014 Feb 26. PMID: 24571571.
- 36. Chokshi T, Alaparthi GK, et.al. Practice patterns of physiotherapists in neonatal intensive care units: A national survey. Indian J Crit Care Med. 2013 Nov;17(6):359-66. doi: 10.4103/0972-5229.123448. PMID: 24501488; PMCID: PMC3902571.