A STUDY TO ASSESS THE EFFECTIVENESS OF VIDEO ASSISTED TEACHING PROGRAMME ON KNOWLEDGE REGARDING SELECTED PAEDIATRIC EMERGENCIES AMONG MOTHERS OF UNDER -FIVE CHILDREN KLE DR. PRABHAKAR KORE CHARITABLE HOSPITAL BELAGAVI

Shivaprasd Kamat¹, Dr. Mahaling M H², Sanjay Algundi³

- ¹ Senior tutor, Department of Child Health Nursing, KAHER Institute of Nursing sciences, Belgavi, India. shivukamat4u@gmail.com
- ² Professor, Department of Child Health Nursing, KAHER Institute of Nursing Sciences, Belgavi, India. mahalingmh@gmail.com
- ³ Senior Tutor, Department of Child Health Nursing, KAHER Institute of Nursing science Belagavi, India. sanjay.alagundi@gmail.com

Abstract

Background: People are under stress due to population growth and lifestyle changes, which is raising mortality and morbidity rates. Children are more likely to experience these because of their insufficient organ responses and incapacity to deal, particularly in emergency situations. Emergencies include burns, poisoning, falls, injuries, and ingestion of foreign objects in children. Ignorance of paediatric emergency can lead to a number of issues, including fractures, falls, and injuries. Individuals who provide care, particularly mothers with children under five, should be adequately informed about podiatric crises. Thus, the goal of this study is to increase the understanding of specific paediatric emergencies among moms of children under five.

Objectives:

- 1: Determine mothers of children under five years old's degree of awareness about pediatric crises both before and after the video-assisted teaching program.
- 2. To assess how well moms of children under five understand specific pediatric emergencies after participating in a video-assisted learning program.
- 3. To determine the relationship between a subset of demographic characteristics and mothers' pre-test knowledge levels.

Keyword: Effectiveness, Video Assisted Teaching Program, Selected Pediatric Emergencies, Under- Five Mothers

INTRODUCTION

A child's development is the progression from dependence to greater independence as they grow into adolescence. A child's early years are crucial for their cognitive, social, and emotional development. Consequently, it's critical that parents take all the required measures to guarantee that their kids grow up in settings that meet their social, emotional, and educational needs¹. One of the most varied and difficult patient groups is that of children. Only about 5% of patients in the emergency room have catastrophic sickness or injury, although making up over 30% of all patients. Community emergency rooms, rather than pediatric hospitals, are where the majority of pediatric emergency visits are assessed. It is crucial to identify illnesses and injuries that affect juvenile patients as soon as possible and to treat them aggressively³.

In addition to providing a range of services to kids and their families, pediatric care providers occasionally triage and treat minor emergencies. Sometimes parents or other caregivers bring their infants or children to primary care offices with potentially fatal illnesses or injuries in order to get aid from medical professionals they trust and know. When this happens, the personnel and office must be ready to offer emergency stabilization as well as life-saving care when needed. Every medical professional who treats children has significant duties, including stabilizing pediatric emergencies appropriately and transferring patients on time to a hospital that can provide them with long-term care6.

Although emergency situations involving newborns and kids visiting medical offices are not uncommon, the precise number varies greatly based on the features of the practice. For instance, a telephone study revealed that over 2400 pediatric emergencies

involving potential death occur annually. Almost two-thirds of pediatricians and family medicine practitioners who participated in the survey, who work in urban settings, said they see at least one child every week who needs to be admitted to the hospital or urgent care center, and eighty percent said they have seen at least one very sick patient in the previous three months.73% of pediatricians surveyed separately said they had one or more crises each week. Numerous investigations have been carried out to determine the categories of pediatric crises that include respiratory The most common reports include emergencies, seizures, infections (particularly in small newborns), shock/dehydration, and significant traumatic injuries. An immediate change in physiological or psychological status that has the potential to cause death, incapacity, or delayed recovery without prompt and adequate care is referred to as a medical emergency8.

Children most frequently go to the emergency room for respiratory infections, fever, coughing, vomiting, skin rash, ear infections, sore throats, abdominal pain, urinary tract infections, and injuries such as sprains, fractures, open wounds, and lacerations. Older children's ER visits are mostly caused by injuries, while respiratory conditions such acute bronchitis and upper respiratory tract infections are the leading cause of visits for children ages 0–4. Pneumonia, asthma, acute bronchitis, and upper respiratory infections are the top four respiratory conditions that cause pediatric patients to be hospitalized9.

In India, road traffic injuries are becoming a more serious public health issue for both adults and children. India had 39, 40, and 11 road traffic crash casualties, injuries, and fatalities per 100,000 people in 2013. In India, there are 12% more registered motor vehicles every year. and is anticipated to grow by 500–600 million by 2014, up from 112 million in 2010. There will probably be significant effects from the growing motorization on physical activity, air quality, and traffic injuries. It is projected that by 2020, the number of road traffic deaths will more than double.

One of the main causes of morbidity and mortality in children is accidents. An accident is described as an unforeseen, unplanned event that typically results in property damage, unintentional injury, or death. Among children aged 1-4, injuries account for about 40% of mortality and cause three times as many deaths as congenital defects, the second most common cause of death. Worldwide, accidents are a leading cause of non-communicable diseases. Industrialization, technological development, improved health care, and preventative measures like vaccinations.13

Brutal Children's poisoning continues to be a significant public health issue and is a common reason for hospital admissions. According to several research, the prevalence of childhood poisoning varies from 0.33% to 7.6%.80% of all poisoning incidents occur in children under the age of five, who are the most prevalent target of poisoning. Parent-given drugs are the primary source of poisoning in the first year of life. The majority of poisoning instances occur between the ages of two and three from household cleaning agents; between the ages of three and five from pharmaceuticals left out or in a cupboard; and between the ages of school age and adolescent from medications used to commit suicide.14

Dog bite injuries in children vary in severity and are frequently seen. According to the center for disease control, one in five of those bites results in an injury that needs medical attention. In addition, children are more prone than adults to sustain injuries from a dog bite. The majority of the patients ranged in age from 3 to 8 years. The most serious injuries include numerous hospital

hospitalizations, urethral injuries needing phased repairs, ocular injuries, and emasculation with bilateral orchiectomy. The hospital stay could last anything from one day to fifteen days. Dog bites to children can result in a variety of injuries, many of which need surgical repair, and can have a serious negative impact on health. Given the high frequency of dog bites, one could assume that the present preventive methods are insufficient. An indigenous To reduce dog bites among children, a campaign for dog bite prevention and education must be created ¹⁶.

One of the most frequent home mishaps is a fall, which can cause severe injuries like concussions, broken bones, and even death, especially in young children and the elderly. Taking additional care around the house is the best method to prevent falls. Other recommendations include keeping floors free of tripping hazards like toys or shoes17 and installing non-skid rubber mats in kitchens and restrooms.

The kitchen is the most likely place for domestic mishaps, with minor cuts being the most frequent. Keep knives sharp (a dull knife can easily slip), use them solely at the cutting board rather than carrying them around the kitchen, and store them safely in a knife block when not in use to prevent cuts. Continue to provide first aid as well. The kitchen is undoubtedly the most common area in the house where burns can happen by mistake, but there are other areas as well that require caution. Verify that the water heater's temperature is less than 120 degrees. Every room should have a functional smoke alarm that is inspected on a regular basis, along with fire extinguishers and a family escape route that everyone knows¹⁹.

Over thirty percent of children between the ages of one and four who die from unintentional injuries drown, and the majority of these drownings occur in residential swimming pools. Make sure a swimming pool has a gated barrier that closes. Furthermore, regardless of whether it's a bathtub or a swimming pool, Never leave a youngster unattended near water This is really important.²⁰

Children's health is the result of intricate, dynamic processes that are triggered by the interplay of their genes, biology, and behaviors with external factors including their families, social surroundings, and physical environments. Children's health is shaped and determined in large part by the developmental process since they are constantly evolving and changing as a result of these interactions. However, many national, state, and local data collection and measurement programs use regular ways to define and assess health that are adult-based and fail to account for the variety of factors on children's health as well as its developmental nature²¹.

A paediatric patient should not be treated in the same manner as an adult patient, despite the fact that they may seem to be little versions of each other. A podiatric patient should not be treated in the same manner as an adult patient, despite the fact that they may seem to be little versions of each other. Immature children require extra attention and care, therefore it's critical to provide them with both physical and psychological support²².

METHODOLOGY

The present study is aimed to assess the effectiveness of video assisted teaching programme on knowledge regarding selected pediatric emergencies among mothers of under five children in a selected at KLE Dr. Prabhakar Kore Charitable Hospital Belagavi".

RESEARCH APPROACH: An evaluative research approach was used in this study.

RESEARCH DESIGN: Pre-experimental research design is the method employed for this investigation.

Pre-experimental design, or one group pre-tests post-tests, was chosen for the investigation.

SETTING OF THE STUDY: Mothers of children under five who were patients at KLE Dr. Prabhakar Kore Charitable Hospital Belagavi were the subjects of the current study.

VARIABLES UNDER STUDY:

INDEPENDENT VARIABLE: The independent variable in this study is a video-assisted learning program designed to raise mothers of children under five's awareness of pediatric crises.

A DEPENDENT VARIABLE: It refers to the level of knowledge among moms of children under five in the current study.

DEMOGRAPHIC VARIABLES: An uncontrolled variable that significantly affects the study's outcome is referred to as an attributable variable. such as age, religion, eating habits, family type, mother's career and level of education, monthly family income, and support network.

TARGET POPULATION: Mothers of children under five were the study's target group.

ACCESSIBLE POPULATION: Mothers of children under five who fit the inclusion requirements at KLE Dr. Prabhakar Kore Charitable Hospital Belagavi made up the accessible population for this study.

SAMPLE AND SAMPLE SIZE: A sample of 60 mothers with five children made up the sample size for this study.

SAMPLING TECHNIQUE: To choose the study's samples, a non-probability convenient sampling strategy was employed

CRITERIA FOR SAMPLE SELECTION

Inclusion criteria: Mothers, who are,

- Able to understand either Kannada or English or Hindi.
- Willing to participate in the study.
- Mothers who are having children under five years of age.
- Mothers who are present at the time of data collection.

Exclusion criteria: the mother who are,

Mothers who have undergone any kind of teaching or awareness programme regarding pediatric emergencies.

SELECTION AND DEVELOPMENT OF THE instrument:

The following procedures were followed in order to choose and create the data collection instrument, taking into account the research topic and study objectives.

CHOICE OF TOOL: The equipment a researcher uses to gather data are referred to as tools. Based on the goals of the investigation, a structured knowledge questionnaire was used since it was thought to be the best tool for getting the subjects' responses.

The tool is prepared by going through the following steps:

literature review, blue print preparation, topic expert opinion There were two sections to the tool.

Section A: Sociodemographic Information It includes the following: age, religion, eating habits, family type, mother's occupation and level of education, monthly family income, and the support network for pediatric crises.

Section B: Questionnaire on Structured Knowledge It's a positivist approach to research. It comprises the

large number of responders and the researcher's minimal engagement

RELIABILITY OF THE TOOL: Following validation, a reliability test was conducted on the tool. Six mothers of children under five received the gadget at the KLE Dr. Prabhakar Kore Charitable Hospital in Belagavi. The split half approach was employed in this investigation to determine the tool's dependability, and the resultant value is r=1. As a result, the instrument is thought to be quite trustworthy for conducting the primary research.

PRE-TESTING OF THE TOOL: Six moms of children under five who meet the sample inclusion criteria tried out the modified version of the tool in Kannada, Hindi, and English. The purpose of the tool's pre-testing was to ensure that the items were clear, the language was not ambiguous, and the tool was feasible. The selected subject shared characteristics with the populations being studied. An acceptable amount of time was spent on the structured knowledge questionnaire, which took an average of 45 minutes to complete. It was discovered that the tool's language was clear and easy to grasp.

METHOD OF DATA COLLECTION: The medical officer of KLE Dr. Prabhakar Kore Charitable Hospital Belagavi formally granted permission. The researcher gave the authorities an explanation of the study's purpose, and KLE Dr. Prabhakar Kore Charitable Hospital Belagavi formally granted approval. The primary study was carried out between 9.30 a.m. and 4.30 p.m. on April 4, 2022, and May 5, 2022, to accommodate moms of children under five. The investigator introduced himself and described why the data was being collected. to the subjects and ascertained their readiness to take part in the study. It was assumed by the subject that the information they submitted would remain confidential and anonymous. The chosen participants were asked to meet in the ABCD unit of the KLE Dr. Prabhakar Kore Charitable Hospital in Belagavi. The structured knowledge questionnaire was given to the chosen sample with the necessary information prior to the intervention on the seventh day following the intervention, in order to administer the video-assisted teaching program. A post-test was also conducted using the same structured knowledge questionnaire.

PLAN FOR THE DATA ANALYSIS: The information gathered was examined using both inferential and descriptive statistics, including mean percentage and standard deviation, to characterize the mothers of children under five's level of awareness of pediatric crises.

The effectiveness of the Video Assisted Teaching Program me (VATP) will be further statistically significant and examined using the 't' test and chi-square test to determine any associations. Data that has been analyzed will be shown in tables, graphs, and diagrams.

SUMMARY: The methodology gives a general overview of the research study, including the what, when, where, and how of the chosen study. The present study used an adapted technique to assess the efficacy of a video-assisted education program on pediatric emergencies among moms of children under five. Research methodology, research design, research setting, variables, population, sample, sample size, sampling technique, sampling criteria, tool selection and development, data collection description, tool & technique, content validity of the tool, tool reliability, pilot study, data collection procedure, and data analysis plan have all been covered in this chapter.

RESULTS

In order to evaluate mothers' awareness of specific pediatric emergencies, this chapter analyzes and interprets data collected from 60 moms of children under five. Data was gathered both before and after the video-assisted teaching program, and descriptive and inferential statistics were used to arrange, tabulate, analyze, and link the data. The goals of the study served as the basis for the data collecting.

The main objectives were:

- 1. Determine mothers of children under five years old's degree of awareness about pediatric crises both before and after the video assisted instruction program.
- 2. To assess how well moms of children under five understand specific pediatric emergencies as a result of a video-assisted learning program.
- 3. To determine the relationship between moms' pre-test knowledge and a few chosen demographic factors.

HYPOTHESIS:

H0₁: Following the video-assisted teaching program, moms of children under five do not significantly know more about pediatric emergencies.

H0₂: Mothers with children under five do not significantly correlate their pre-test knowledge level with the sociodemographic characteristics they have chosen.

ORGANIZATION OF FINDINGS:

SECTION A: The frequency and percentage distribution of respondents' demographic traits are covered in this section.

SECTION 2a: The respondents' overall and aspect-specific pretest knowledge scores on a few chosen pediatric crises.

Section 2b: Post-test knowledge scores of responders on specific pediatric crises, both overall and by aspect.

SECTION 2c: Pre- and post-test knowledge scores overall and by aspect for a selection of pediatric emergencies.

SECTION 3: Pretest knowledge level on specific pediatric crises and demographic characteristics are correlated.

SECTION A: The frequency and percentage distribution of respondents' demographic attributes are covered in this section.

Section 1: The Respondents' Demographic Details Respondents' Personal Characteristics: Classification N=60

Table No.1. The demographic features of the samples are described in Table.

Characteristics	Category	Responder	nts
		Number	Percent
Age group (years)	19-22	19	31.7
	23-26	24	40.0
	27-32	17	28.3
Educational	Upto SSLC	26	43.3
qualification	PUC	29	48.4
	Graduate	5	8.3
Occupational status	Unemployed	43	71.7
	Semi skilled worker	17	28.3
Total		60	100.0

Table No.1. shows that out of 60 moms who were under five, 24 (40.0%) belonged to the age range of 23–26 years, followed by 19 (31.7%) to the age group of 19–22 years, and 17 (28.3%) to the age group of 27–32 years. Regarding educational attainment, among the study group's under five moms, 29 (48.4%) had completed their PUC, 26 (43.3%) had completed their SSLC, and 5 (8.3%) had completed their graduate studies. Regarding employment status, of the 43 (71.7%) jobless, 17 (28.3%) were semiskilled workers.

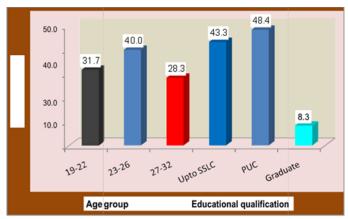


Figure 1: Respondents' Age and Education Group Classification

Figure 1 shows that out of 60 moms with children under five, 24 (40.0%) belonged to the age group of 23–26 years, followed by 19 (31.7%) to the age group of 19–22 years, and 17 (28.3%) to the age group of 27–32 years. In terms of educational attainment, 29 (48.4%) of the mothers of children under five had completed their PUC, 26 (43.3%) had completed their SSLC, and 5 (8.3%) had completed their graduate studies.

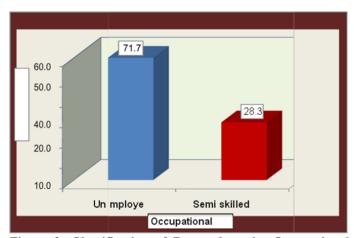


Figure 2: Classification of Respondents by Occupational status

With respect to occupational status among 43 (71.7%) unemployed, 17 (28.3%) were semiskilled worker (Figure 2)

Table 2: Classification of Respondents by Family Characteristics N=60

Characteristics	Category	Respondents			
		Number	Percent		
Religion	Hindu	26	43.3		
	Muslim	18	30.0		
	Christian	16	26.7		
Family	≤ Rs.10,000	24	40.0		
income/month	Rs.11,000-	27	45.0		
	15,000				
	Above Rs.15,000	9	15.0		
Type of family	Nuclear	19	31.7		
	Joint	28	46.7		
	Extended	13	21.6		
Place of Residence	Rural	0	0.0		
	Urban	60	100.0		
Total		60	100.0		

Table 2: Based on Table No. 3. Of the 60(100%) participants, the majority followed a mixed diet in 31, (51.7%) cases, and a vegetarian diet in 29 (48.3%).

Additionally, it shows that 10 (16.7%) of the 50 (83.3%) respondents knew nothing about pediatric emergencies, whereas the remaining 50 (83.3%) did.

About five (8.3%) people said they learned about pediatric emergencies via friends and family, and five (8.3%) said they learned about them from medical professionals or neighbors.

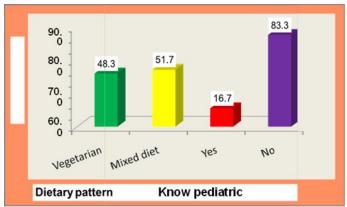


Figure.3: Respondents' dietary patterns and knowledge of pediatric emergencies

Based on Figure 3. Of the 60(100%) participants, the majority followed a mixed diet in 31, (51.7%) cases, and 29 cases (48.3%) were vegetarian.

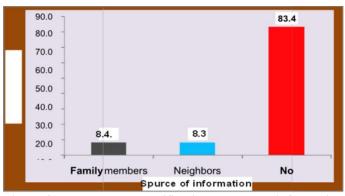


Figure.4: Respondent classification based on information source

Additionally, Figure 4 shows that 10 (16.7%) of the 50 (83.3%) respondents knew nothing about pediatric emergencies, whereas the remaining 50 (83.3%) did. About five (8.3%) people said they learned about pediatric emergencies via friends and family, and five (8.3%) said they learned about them from medical professionals or neighbors.

Table-3: Classification of Respondent Pre test Knowledge

level on selected paediatric emergencies.

Knowledge	Category	Responde	nts
Level		Number	Percent
Inadequate	≤ 50 % Score	45	75.0
Moderate	51-75 % Score	15	25.0
Adequate	> 75 % Score	0	0.0
Total		60	100.0

The above table 3 demonstrates that, of the 60 people, 45 (or 75%) have insufficient knowledge about pediatric emergencies, 15 (or 25%) have intermediate knowledge, and no one has sufficient knowledge.

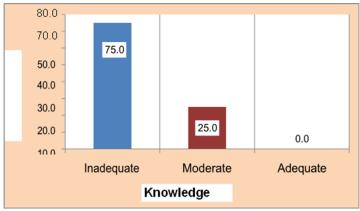


Figure 5: Respondent Pre-Test Knowledge Level **Classification on Selected Pediatric**

Emergencies According to the above table, no one has adequate understanding of pediatric emergencies, whereas 75% of mothers have inadequate knowledge, 25% have intermediate awareness, and none has any information at all. (Figure 5)

Table 4: Aspect-wise Mean Knowledge scores of participants

on specific pediatric crises from the pre-test N-60.

No	C			Knowledge Scores			a= (0 ()
	Aspects	ents	Score	Mean	SD	Mean(%)	SD(%)
I	Causes, Types,	17	17	5.90	2.36	34.7	13.9
	Incident of						
	Pediatric						
	emergencies						
II	Preventive	13	13	5.43	1.86	41.8	14.3
	measures of						
	accidents,						
	Poisoning & Bites						
	Combined	30	30	11.33	3.52	37.8	11.7

Table No. 4 above shows that the mean score for the causes, kinds, and incidents of pediatric emergency pretest is 5.90 (34.7%), with a standard deviation of 2.36 (13.9%). The mean pretest score for accidents, poisoning, and bites is 5.43 (41.8%), with a standard deviation of 1.86 (14.3%) in the area of accident prevention.

Section 3: General and Aspect-specific Respondents' posttest knowledge scores on a few specific pediatric emergencies - Table 5

- Table 5					
Knowledge	Category	Respondents			
Level		Number	Percent		
Inadequate	≤ 50 % Score	0	0.0		
Moderate	51-75 % Score	17	28.3		
Adequate	> 75 % Score	43	71.7		
Total		60	100.0		

Table 5: presents the respondents' post-test knowledge level classification on specific pediatric crises. Regarding specific pediatric emergencies, table no. 6 above demonstrates that, of 60 mothers of children under five, 43 (71.7%) have an adequate level of knowledge and 17 (28.3%) have a moderate level of understanding.

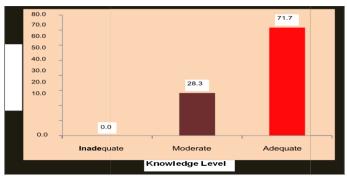


Figure 6: Respondents' Post-Test Knowledge Level Classification on Selected Pediatric Emergencies.

According to the graph above, of the 60 respondents, 43 (71.7%) had adequate knowledge of pediatric crises, and 17 (283.3%) had fairly adequate knowledge. (Figure 6)

Section 4: General and Aspect-specific Knowledge Scores from the Pre- and Post-Tests on Selected Pediatric Emergencies. N=60 - Table 6

Table 6: lists respondents' aspect-wise post-test mean knowledge ratings for a selection of pediatric emergencies.

	Knowledge	Statements	Max.	Knowledge Scores				
	Aspects		Score	Mean	SD	Mean(%)	SD(%)	
Ι	Causes, Types,	17	17	13.85	1.53	81.5	9.0	
	Incident of							
	Pediatric							
	emergencies							
II	Preventive	13	13	10.67	1.42	82.1	10.9	
	measures of							
	accidents,							
	Poisoning &							
	bites							
	Combined	30	30	24.52	2.34	81.7	7.8	

The above table displays the mean score for causes, kinds, and incidents of pediatric emergencies (81.5%) among 60 responders after the exam, with a standard deviation of 1.53 (9%).

The mean score for preventive measures against accidents, poisoning, and bites is 10.67 (82.1%) with a standard deviation of 1.42 (10.9%).

Overall Mean Knowledge Scores for Selected Pediatric Emergencies before and after the exam N=60

Table7: Knowledge Scores

Aspects	Max.	Knowled	Knowledge Scores					
	Score	Mean SD Mea (%) SD			SD	Test		
					(%)			
Pre test	30	11.33	3.52	37.8	11.7	29.06*		
Post test	30	24.52	2.34	81.7	7.8			
Enhancement	30	13.18	3.50	43.9	11.7			

^{*} At the 5% level, significant at (0.05, 59df) = 1.96

Table 7:Table No. 8 pretest mean score is 11.33 (37.8%), SD 3.52 (11.7%), as can be shown. Post-test mean score (SD 2.34, 7.8%) = 24.52 (81.7%). Accordingly, the enhanced mean score was 13.18 (43.9%) with a standard deviation of 3.50 (11.7%).

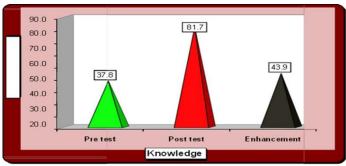


Figure.7: Mean Knowledge scores overall for selected pediatric crises before and after testing.

The pretest mean score is 37.8%, the posttest mean score is 81.7, and the enhancement is 43.9%, as illustrated in Figure 7. Aspect-wise mean knowledge scores from the pre- and post-tests on a few selected pediatric emergencies. N=60

Table 8: Knowledge Aspects

No.	Knowledge	Respo	Respondents Knowledge (%)					
	Aspects	Pre te	st	Post test		Enhancement		't' Test
		Mean	SD	Mean	SD	Mean	SD	
I	Causes, Types,	34.7	13.9	81.5	9.0	46.8	12.5	29.00*
	Incident of							
	Pediatric							
	emergencies							
II	Preventive	41.8	14.3	82.1	10.9	40.3	16.7	18.69*
	measures of							
	accidents,							
	Poisoning &							
	bites							
	Combined	37.8	11.7	81.7	7.8	43.9	11.7	29.06*

^{*} Significant at 5% level, t(0.05,59df) = 1.96

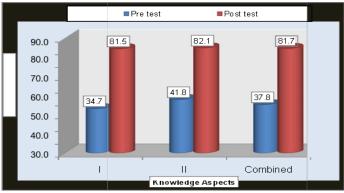


Figure.8: Aspect-wise Mean Knowledge scores on chosen pediatric crises before and after testing

The aforementioned table illustrates the mean pretest score of 34.7%, SD of 13.9%, for the causes, kinds, and incidents of pediatric crises; the mean posttest score is 81.5%, SD of 9%. Moreover, the paired "t" test value is 29.00, and the enhancement mean and SD are 46.8%, 12.5%. The mean pretest score for accidents, poisoning, and bites was 41.8%, SD 14.3%, but the mean posttest score was 82.1%, SD 10.9%, in the area of preventive measures. 40.3% and 16.7%, respectively, are the augmentation mean and SD. The value of the paired "t" test is 18.69. (Figure 8)

The combined mean score for the pretest and posttest was 37.8%, 11.7 SD, 81.7 and 7.8, respectively. Additionally, the improved mean and SD The result is 11.7 and 43.9. Moreover, the paired "t" test result is 29.06. Thus, it is clear that participants' mean post-test scores are substantially higher than their pretest scores. At the 0.05 level of significance, the paired "t" test value of 29.06 is highly significant. Therefore, the study hypothesis is approved.

Thus, the research hypothesis H1, which predicted that following a program of video-assisted instruction, moms of children under five will have a markedly higher level of expertise in specific pediatric situations. Thus, it was determined that the program of video-assisted instruction was effective in raising respondents' level of knowledge.

Respondents' pre- and post-test knowledge levels on several pediatric emergencies were classified –

Table-9

Knowledge	owledgeCategory Classification ofχ						
Level		Res	ponder	ıts		Value	
		Pre	Pre test		test		
		N	%	N	%		
Inadequate	≤ 50 % Score	45	75.0	0	0.0		
Moderate	51-75 % Score	15	25.0	17	28.3	88.13*	
Adequate	> 75 % Score	0	0.0	43	71.7		
Total		60	100.0	60	100.0		

* Significant at 5% level, χ^2 (0.05,2df) = 5.991

Table No. 9 above illustrates that, of the 60 sample respondents who took the pretest, 45 (or 75%) had insufficient knowledge, and 15 (or 25%) had a moderate level of understanding. While 43 (71.7%) of the same respondents indicated they had appropriate understanding after taking the test, just 17 (28.3%) reported having a moderate level of knowledge. The chi square value is 88.13 at the 5% significance level.

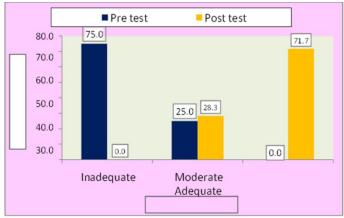


Figure: 9 Classification of Respondents on Pre- and Post-Test Proficiency in particular pediatric emergencies.

According to the above figure, during the pretest, 45 people (or 75%) had insufficient information, while 15 people (or 25%) had a moderate level of understanding. Only 17 (28.1%) had fairly adequate understanding during the post-test, while 43 (71.7%) had adequate knowledge of the subject. (Figure 9)

Section 5: Relationship between Pre-test Knowledge Level and Demographic Variables on Selected Pediatric Emergencies

Table 10: Demographic factors and pre-test knowledge level on particular pediatric emergencies are correlated. N = 60

Demographic Variables	Category	Sa mpl e	Know	Knowledge Level				P
			Inadeo	Inadequate		Moderate		Value
			N	%	N	%		
Age group (years)	19-22	19	13	68.4	6	31.6	0.54	P>0.05 (5.991
	23-26	24	18	75.0	6	25.0	NS	
	27-32	17	11	64.7	6	35.3		
Educational qualification	Upto SSLC	26	16	61.5	10	38.5	2.32	P>0.05 (5.991
	PUC	29	23	79.3	6	20.7	NS	
	Graduate	5	3	60.0	2	40.0		
Occupational status	Unemployed	43	27	62.8	16	37.2	3.86*	P<0.05
	Semi skilled worker	17	15	88.2	2	11.8		(3.841)
Religion	Hindu	26	14	53.9	12	46.1	7.57*	P<0.05 (5.991
	Muslim	18	13	72.2	5	27.8		
	Christian	16	15	93.8	1	6.2		
Family income/month	≤ Rs.10,000	24	16	66.7	8	33.3	0.39	P>0.05 (5.991)
	Rs.11,000-15,000	27	20	74.1	7	25.9	NS	
	Above Rs.15,000	9	6	66.7	3	33.3		
Type of family	Nuclear	19	14	73.7	5	26.3	0.86	P>0.05 (5.991)
	Joint	28	18	64.3	10	35.7	NS	
	Extended	13	10	76.9	3	23.1		
Dietary pattern	Vegetarian	29	24	82.8	5	17.2	4.35*	P<0.05
	Mixed diet	31	18	58.1	13	41.9		(3.841)
Know about pediatric	Yes	10	4	40.0	6	60.0	5.14*	P<0.05 (3.841)
emergencies	No	50	38	76.0	12	24.0		
Source of information	Family members/Relatives	5	3	60.0	2	40.0	0.48	P>0.05 (5.991
	Neighbors/Health professional	5	4	80.0	1	20.0	NS	
	No	50	35	70.0	15	30.0		
Combined		60	45	70.0	15	25.0		

At the 5% Level, significant, NS: non-significant

Note: Table value TABLE -10 is shown by figures in brackets.

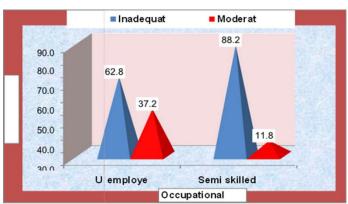


Figure.10: Relationship between Pre-Test Knowledge Level and Occupational Status for Selected Pediatric Emergencies.

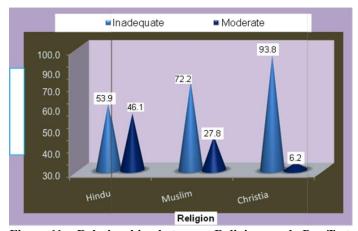


Figure.11: Relationship between Religion and Pre-Test Knowledge Level on Selected Pediatric Emergencies.

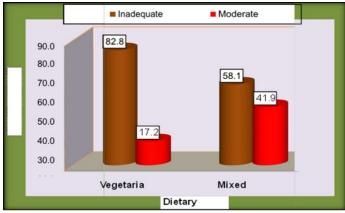


Figure.12: The relationship between dietary pattern and pre-test knowledge level on several pediatric emergencies is shown in Figure.16.

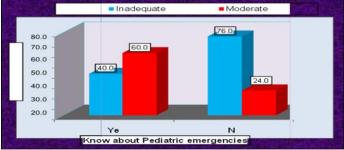


Figure.13: Relationship between Pre-test Knowledge Level on Selected Pediatric Emergencies and Knowledge on Pediatric Emergencies.

The relationship between demographic factors and pretest knowledge level for several pediatric emergencies is displayed in Table No. 11.

The relationship between age group and knowledge level reveals a chi square value of 0.54, which is lower than the value in the table. This suggests that, at the 0.05 level of significance, there is no relationship between age group and knowledge level.

Chi square value for the type of education level is 2.32, which is lower than the value in the table. This suggests that, at the 0.05 level of significance, there is no correlation between the type of education and knowledge levels.

The chi square value for occupational status is 3.86, which is higher than the number in the table. This suggests that, at the 0.05 level of significance, there is a substantial relationship between knowledge level and occupational status.

The chi square value for religion is 7.57, which is higher than the number in the table. This suggests that, at the 0.05 level of significance, there is a significant relationship between knowledge level and religion.

The chi square value is 0.39 in relation to monthly household income, which is smaller than the figure in the table. At the 0.05 level of significance, it suggests that there is no correlation between family income per month and knowledge level.

The chi square level for this family type is 0.76, which is smaller than the figure in the table. It indicates that, at the 0.05 level of significance, there is no correlation between knowledge level and family type.

The chi square for the eating pattern is 4.35, which is higher than the number in the table. It indicates that, at the 0.05 level of significance, there is a substantial correlation between knowledge level and diet pattern. (Figure 10-13)

Thus, it was decided to accept hypothesis H1, which predicted a strong correlation between knowledge of pediatric emergencies, dietary patterns, religion, and occupational status. Regarding age group, educational attainment, family income per month, family type, and information source, hypothesis H2 was also rejected.

DISCUSSION

The goal of the current study was to evaluate the efficacy of a video-assisted learning program on understanding of specific pediatric emergencies among mothers of children under five who were receiving care at KLE Dr. Prabhakar Kore Charitable Hospital in Belagavi.

Convenient sampling was utilized to pick the samples in a preexperimental pre-test, post-test design with a quantative approach, in order to meet the study's objectives. Data collection took place during a four-week period.

Data collection from sixty moms with children under five was done in conjunction with a program of video-assisted instruction. A week later, a post-test was held. The primary conclusions have been arranged and examined in light of the research goals and conjecture. The following sections discuss the findings.

SECTION 1: Results concerning the demographic attributes of moms with less than five children.

SECTION 2: Results derived from the study's objectives and hypothesis testing are presented in section 2

SECTION 1: Conclusions drawn from the demographic information:

60 moms with children under five were chosen for a research project at the KLE Dr. Prabhakar Kore Charitable Hospital in Belagavi.

The following findings about demographic variables were discussed:---

- With regard to age, the majority of 24 (40%) belonged to the 23–26 age group, followed by 19 (31.7%) to the 19–22 age group, and 17 (28.3%) to the 27–32 age group.
- About the moms under five, 29 (48.4%) had completed their education up to the PUC level, 26 (43.3%) in the study group had completed their SSLC level, and 5 (8.3%) had completed their graduate degree.
- Regarding employment status, out of 43 (71.7%) jobless individuals, 17 (28.3%) were semiskilled workers.
- Regarding religion, the majority of respondents are 26 (43.3%) Hindu, 18 (30%) Muslim, and 16 (26.7%) Christian.
- Regarding monthly family income, the majority of 27 (45%) earn between \$11,000 and \$15,000, 24 (40%) earn less than \$10,000, and 9 (15%) earn more than \$15,000.
- Within the predominant family type, 28 (46.7%) are joint families, 19 (31.7%) are nuclear families, and 13 (21.6%) are extended families.
- Regarding dietary patterns, out of 60 (100%) participants, 31 (51.7%) followed a mixed diet.
- The findings on knowledge regarding pediatric crises indicate that 10 (16.7%) people had knowledge of pediatric emergencies, while 50 (83.3%) people did not.
- Approximately 5.3% of respondents learned about pediatric emergencies via family or relatives, whereas 8.3% of respondents learned about it from neighbors or medical professionals.

SECTION-2: In this section, the objectives of the study are discussed. The first objective was to assess the level of knowledge regarding pediatric emergencies among mothers of under five children before and after Video Assisted Teaching Programme.

The overall pre-test mean knowledge score obtained by the mothers of under five children was 11.33(37.8%) with the standard deviation of 3.52(11.7%) which showed that the mothers of under five children had inadequate knowledge regarding selected pediatric emergencies. Revealed that the pre test knowledge score of under-five mothers 9 (15%) mothers having good knowledge score, 51 (85%) mothers are having average knowledge score. In post test 56 (93.33%) mothers having good knowledge score, 4 (6.7%) mothers are having average knowledge score. The study findings also revealed that the mean and standard deviation of knowledge level of mothers were 2.15 and 0.3600 respectively. The mean difference between pre test and post test was computed and it was 0.78 and 't' was found to be 19.946 which was significant at 0.05 level. The final result indicates that there was a significant difference between pre and post tests knowledge score. There is no significant association between knowledge with the selected demographic

The second objectives were to evaluate the effectiveness of video assisted teaching programme on knowledge regarding selected pediatric emergencies among mothers of under five children. Knowledge level obtained by the pediatric under five mothers following video assisted teaching programme Post-test mean score 24.52 (81.7%), which was found to be higher than the overall knowledge level mean pretest mean score 11.33 (37.8%), with an enhancement of 13.18 (43.9%). It was found to be statistically significant at the level of P<0.05. Hence the research hypothesis H1 which was stated that there will be a significant improvement of level of knowledge among mothers

of under five children in selected pediatric emergencies after video assisted teaching programme. So it was concluded that video assisted teaching programme was affective in improving knowledge of the respondents.

The findings of this study was supported by-A descriptive study was conducted in selected urban community of Nashik, India. 90 under five mothers was selected for the study. Accident injuries are most common cause of death in children over the age of one. Every year millions of children are permanently disable or disfigured because of accident. The largest number of accident happen in the living or dining room but the most serious accident happens in the kitchen and on the stair.

Major home accidents are attributed to careless of parents and poor maintenance. The unintentional injuries in the home result from falls, burns, poisoning, accidental shooting and suffocation and sharp knives. Demographic variable showed 45.6% mother wear in the age group of 26-30 years, 62.2% of them belongs to Hindu religion, 55.6% belongs to joint family, 82.2% had only one toddler in family, 82.2% were housewives, 75.6% were living in pukka house, 55.6% got knowledge about prevention of home accident through mass media. E.g. T.V and radio74. The third objective was to find out the association between pretest level of knowledge of mothers, with selected demographic

the third objective was to find out the association between pretest level of knowledge of mothers, with selected demographic variables. The association between knowledge level and age group revels that the chi square value 0.54 which is less than the table value. This infers that there is no association between age group and knowledge level at 0.05 level of significance.

- In the type of education level, chi square value 2.32 which is less than table value. This infers that there is no association between type of education level and knowledge level at 0.05 level of significance.
- With regard to occupational status chi square value is 3.86 which is greater than the table value. This infers that there is a significant association between occupational status and knowledge level at 0.05 level of significance.
- In relation to religion chi square value is 7.57which is greater than the table value. This infers that there is significance association between level of knowledge with religion at 0.05 level of significance.
- In relation to family income/month chi square value is 0.39 which is less than the table value. It infers that there is no association between level of knowledge with family income/month at 0.05 level of significance.
- In relation to type of family chi square level is 0.76 which is less than the table value. Which reveals that there is no association between level of knowledge with type of family at 0.05 level of significance.
- In relation to dietary pattern chi square is 4.35 which is greater than the table value. Which reveals that there is significant association between level of knowledge with dietary pattern at 0.05 level of significance.

"A study to assess the effectiveness of video assisted teaching programme on knowledge regarding selected pediatric emergencies among mothers of under five children at KLE Dr. Prabhakar Kore Charitable Hospital Belagavi".

An pre experimental one group pre test post test design was used for this study. A non probability convenient sampling technique was used. Sample size was 50. Closed ended questionnaire was used to collect the data. Data was analyzed by using descriptive and inferential statistics. Finding of the study revealed that highest percentage (36%) of mothers of under five children belongs to the group of non formal education. The overall mean score in pre test was (14.92+-3.9) which is 49.73% of total score

reveals that mothers of under five children had poor knowledge regarding first aid for selected home accidents. Whereas it was 20.5+-3.9 (68.3%) in post test, revealing 18.57% enhancement of knowledge score. Highly significant (p<0.05) was significant 75.

Hence the hypothesis H1 which was stated that there will be significant association between occupational status, Religion, Dietary pattern, and knows about pediatric emergency was accepted. And hypothesis H2 was rejected for age group, educational level, family income/ month, type of family, and so

CONCLUSION

The following study was undertaken knowledge regarding selected pediatric emergencies among mothers of under five children before and after video assisted teaching programme to evaluate the effectiveness of video assisted teaching programme among mothers of under five children in selected community area and to determine the association between pre-test level of knowledge on selected pediatric emergencies among mothers of under five children with selected demographic variables.

The following conclusions were based on the findings. The results were described by using descriptive and inferential statistics.

The following were the conclusions drawn from the study:

- In the demographic data among 60 participants the majority 24(40%) were age group of 23-26 years, followed by 19 (31.7%) age group of 19-22 years, and 17 (28.3%) age belonged to the age group of 27-32 years. With regard to educational status 29 (48.4%) of the under five mothers were educated upto PUC level, 26 (43.3%) have SSLC level in the study group, 5 (8.3%) were graduate level. In the occupational status among 43 (71.7%), unemployed, 17 (28.3%) were semiskilled worker. In Religion majority 26 (43.3%) respondents are Hindu, 18 (30%) are Muslim and 16 (26.7%) are Christian. In the family income/ month majority27 (45%) is 11,000-15,000, 24 (40%) income is less than 10,000/-, and 9 (15%) income is above 15,000/-. In the type if family majority28 (46.7%) is joint family, 19(31.7%) is nuclear family and 13 (21.6%) is extended type of family. Among 60 (100%) majority 31 (51.7%) was mixed diet, and 29 (48.3%) was vegetarian. In relation to known about pediatric emergencies reveals that 50 (83.3%) they did not have any knowledge about pediatric emergency, and 10 (16.7%) they have knowledge about pediatric emergency. 5 (8.3%) have got idea about pediatric emergency from family.
 - The knowledge regarding selected pediatric emergencies was inadequate when assessed in the pre-test. And the knowledge level was improved in the post-test. The overall pre-test mean knowledge score obtained by the women was 11.33 (37.8%), with the standard deviation of 3.52(11.7%) which showed that mothers of under five children had inadequate knowledge regarding selected pediatric emergencies. The overall post-test mean knowledge score obtained by the mother was 24.52(81.7%) with the standard deviation of 2.34(7.8%) which showed that the mothers of under five children knowledge was improved during post test.
 - ➤ The video assisted teaching programme was effective to improve the knowledge of the under five mothers. The overall mean knowledge level obtained by the community menopausal women following video assisted teaching program was 24.52(81.7%) in post-test which was found to be higher than the overall knowledge level 11.33 (37.8%), in the pre-test with an enhancement of

- 13.18 (43.9%). It was found to be statistically significant at the level of P<0.05. Hence the research hypothesis H1 stated that There will be significant improvement in the level of knowledge on selected pediatric emergencies among mothers of under five children after the video assisted teaching programme then before video assisted teaching programme at p<0.5 level was accepted.
- be significant association between occupational status, Religion, Dietary pattern, and knows about pediatric emergency was accepted. And hypothesis H2 was rejected for age group, educational level, family income/month, type of family, and source of information.

IMPLICATIONS OF THE STUDY

The findings of the study have implications in the following areas:

- Nursing Practice
- Nursing Education
- Nursing Research
- Nursing Administration

Nursing Practice: In community or hospital set up nurses play an important role in giving health education. Nurses have opportunities to enhance health promotion activities that can help the mother and care givers to reduce the risk of home accidents of children as educator and role model for their families, communities, and patients, for effective prevention and treatment. Nursing practice is an ongoing process of assistance which aims the all round development of makind. The main focus of nursing practice is to reduce the morbidity and mortality rate and to improve quality of life.

Regular health education programs should be carried out for mothers of under five children by nursing personnel's at all level regarding preventive measures of pediatric home accidents. Help the mothers of under five children to learn their role in controlling pediatric home accidents and prevention of accidents.

• Nurse education has a great part to pay in the practice of remedial measures as all the potential causes discussed could be alleviated by the educational process. Video assisted teaching programme is considered as an effective education strategy to improve the knowledge of the under five mothers in order to practice the safety measures of prevention of accidents.

Nursing Education: Nursing education helps the nurse to develop competence in theoretical as well as practical level. In this present study the nurse educator gives priority to uphold the value of education to improve the knowledge of under five mothers of selected pediatric emergencies. Nurse educators need to lay emphasis on the causes ,types, and incident of pediatric emergencies. Appropriate health education ,teaching programme is given to prevent this problem.

Nurse educators should give more prominence on nurses role on prevention of accidents, poisoning, bites and educating regarding preventive measures of pediatric emergencies. Nurse educates initiate and insist on health education programs for mothers of under five children.

Nursing Research: Nursing research is a systematic investigation and study of materials, sources etc, in order to establish facts and reach conclusions. A research can bring innovative approaches and modern theories in the field of research. It has been reported that pediatric emergencies is the serious issues for the children and can cause child death and disability.

This study investigated the viability to maintain standardized nursing education and practice thus similar research can be conducted in different specialties and setting and there by professional can be achieved. Moreover, it is important to assess what are the necessary steps to be taken prevention of accidents and improving close supervision for the children. A research study can make remarkable changes in their knowledge, attitude, potentials and thereby improving the quality of living.

Nursing Administration: Nursing administrator should make public awareness regarding pediatric emergencies. Nursing administrator can use evidenced based nursing approach within the nursing practice. Nursing administrator is a service sector to control the management operation along with arrangement of service policies in order to plan for organization. Nursing administrators take initiatives for continuous education program. Moreover, administration can evaluate the merit and demerits of an education program.

- In co-operation with the hospital authorities and other health administrators, nurse administrator should take initiative to organize video assisted teaching program for mothers of under five children regarding selected pediatric emergencies.
- Appropriate teaching learning material needs to be prepared and made available for health education program.
- An administrator must be responsible to co-ordinate all health education and public awareness program.
- An administrator is a motivator to all other nursing personnel to contribute their maximum potential to build up safe and healthy children.
- Nurse Manager can conduct periodical health education programme for the mothers and care givers. Nursing leaders are challenge to take the health needs of vulnerable groups especially, by effective organization and management of health services.

LIMITATIONS

- The sample size is limited to 60 menopausal women in selected community areas, Bangalore. Hence generalization is possible only to the selected setting.
- Duration of data collection is limited to 4 weeks.
- Due to time constraint and the sample availability a convenience sampling was used in the present study.
- Randomization was not done. So the sample may not be the true representative of the population.

RECOMMENDATIONS

- A similar study can be replicated by using larger sample size.
- A similar study can be conducted in different setting.
- A similar study can be conducted to assess knowledge among mothers of under five children.
- A study to evaluate effectiveness of health education module on prevention of accidents, poisoning, and bites.
- Follow up study can be done to evaluate the effectiveness in terms of retention of knowledge among mothers of underfive children.

References

- Child Development Essay .Available from:https://www.ukessays.com/ essays/childcare/childdevelopment.php.
- 2. Child Development Essay .Available from:https://www.ukessays.com/essays/childcare/child-development.php.
- 3. Access medicine chapter 50. Paediatric emergencies. Available from https://accessmedicine.

- mhmedical.com/content. aspx? bookid=385& Sectionid=40357266
- 4. Access medicine chapter 50. Paediatric emergencies.
 Available fromhttps://
 accessmedicine.mhmedical.com/content.aspx?bookid=385&
 Sectionid=0357266
- 5. Access medicine chapter 50. Paediatric emergencies.
 Available from
 https://accessmedicine.mhmedical.com/content.aspx?bookid
 =385&Sectionid= 40357266
- 6. Maya A Jones MD,MPH.Available from https:// www.uptodate.com/contents/preparing-an-office-practicefor-pediatric-emergencies
- 7. Maya A Jones MD,MPH.Available from https:// www.uptodate.com/contents/preparing-an-office-practicefor-pediatric-emergencies
- 8. Maya A Jones MD,MPH.Available fromhttps:// www.uptodate.com/contents/preparing-an-office-practicefor-pediatric-emergencies
- 9. Caitlinrae T. Montpetit (RN,BN) Paediatric emergencies Available from https://ceufast.com/course/pediatricemergencies
- Shailaja Tetali, P Edwards, G V S Murthy, and I Roberts
 Road traffic injuries to children during the school commute
 in Hyderabad, India: cross-sectional
 surveyhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC48931
 21/
- 11. Shailaja Tetali, P Edwards, G V S Murthy,and I Roberts
 Road traffic injuries to children during the school commute
 in Hyderabad, India: cross-sectional
 surveyhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC48931
- 12. Shailaja Tetali, P Edwards, G V S Murthy, and I Roberts Road traffic injuries to children during the school commute in Hyderabad, India: cross-sectional survey. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893121/
- 13. Ravinder K. Gupta, Ritu Gupta Home Related Accidents
 During Infancy Available
 fromhttp://jkscience.org/archive/volume62/home.pdf
- 14. Corresponding Author: Address: Büyükdere Mah. Genclik Bulvarı Birkonak Sitesi B Blok: 10 26040 Eskisehir-Turkey. Available from
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446134/ 15. Corresponding Author: Address: Büyükdere Mah. Genclik
- Bulvarı Birkonak Sitesi B Blok: 10 26040 Eskisehir-Turkey.
 Available from
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446134/
- 16. Venkatesh K. L., Apoorva Bhaskar, Deepti VepakkommaStudy of morbidity of pediatric dog bites: single center experience. Available from https://www.ijsurgery.com/index.php/isj/article/viewFile/652/ 653
- 17. Common Home Accidents and How to Prevent Them. Available from https://www.slhn.org/blog/2015/5-common-home-accidents-and-how-to-prevent-them 5.
- 18. Common Home Accidents and How to Prevent Them. Available fromhttps://www.slhn.org/blog/2015/5-common-home-accidents-and-how-to-prevent-them 5
- 19. Common Home Accidents and How to Prevent Them.Availablefromhttps://www.slhn.org/blog/2015/5common-home-accidents-and-how-to-prevent-them 5

RESEARCH

O&G Forum 2024; 34 - 3s: 2862-2873

- 20. Common Home Accidents and How to Prevent Them. Available fromhttps://www.slhn.org/blog/2015/5-common-home-accidents-and-how-to-prevent-them 5
- National Research Council (US); Institute of Medicine (US).
 Washington (DC): National Academies Press (US); 2004.
 Children's Health, The Nation's Wealth: Assessing and
 Improving Child Health. Available from
 https://www.ncbi.nlm.nih.gov/books/NBK92213/
- 22. PediatricEmergencies. Available from https://ceufast.com/course/pediatric- emergencies
- 23. John B.McCabe,MD Quality Pediatric Emergency Care: Everywhere, All the Time .Available from https://www.jpeds.com/article/S0022-3476(08)00574-X/fulltext.
- 24. https://www.researchgate.net/publication/288392275_Sociod emographic_prof ile of paediatric poisoning cases in Bangalore India
- 25. Elliskam Luntton, Alexander K.C Leung Childhood Accidents: Injuries and PoisoningChildhood Accidents: Injuries and PoisoningAvailable from https://www.researchgate.net/publication/47700662_Childho od_Accidents_In juries_and_Poisoning
- 26. CDC Childhood Injury Report. Available from Available from https://www.cdc.gov/safechild/child_injury_data.html.